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Stabilizer operations are at the heart of quantum error correction and are typically implemented
in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits
can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum
information. We demonstrate such a hardware implementation of stabilizers in a superconducting
circuit composed of chains of π-periodic Josephson elements. With local on-chip flux- and charge-
biasing, we observe a softening of the energy band dispersion with respect to flux that is exponential
in the number of frustrated plaquette elements, in close agreement with our numerical modeling.

Protecting fragile information in quantum processors
requires some form of quantum error correction (QEC).
With typical “software” QEC techniques such as the sur-
face code [1], stabilizing a single logical qubit requires
many physical qubits, each of which is typically imple-
mented as a weakly nonlinear oscillator. Error correction
and computation is achieved by a string of operations
and measurements that allow identification of bit-flip and
phase-flip errors. An alternative is to implement quan-
tum stabilizers directly in hardware. Here, error correc-
tion arises from the natural quantum dynamics, reducing
the need for repeated entangling gates, measurements,
and a multitude of control lines and complex classical
control hardware. In this approach, the highly non-trivial
Hamiltonian results in a tiny protected subspace within
a huge Hilbert space.

Both approaches can be characterized by the error sup-
pression factor Λ, the rate at which the logical error de-
creases with system size. The long time required by each
round of software error correction for current transmon
qubit arrays implies that Λ is only marginally greater
than one [2]. In this work, we experimentally demon-
strate the potential to achieve much larger Λ &100 with
the Hamiltonian approach. The price that one pays is
the appearance of relatively low energy modes with gaps
. 1 GHz that make initialization challenging; these gaps
can be made higher through parameter optimization and
the use of superconducting materials with larger energy
gap. Before building a complete scalable logical qubit
with hardware QEC, it is crucial to demonstrate the effec-
tiveness of protection based on Hamiltonian engineering
as system size increases. In this manuscript, we observe
and quantify the stabilizing interaction Hamiltonian be-
tween unprotected elements. We perform spectroscopic
measurements with local flux control and observe signa-
tures of stabilizer terms in the Hamiltonian. Specifically,
we find exponential flattening of the energy bands with
respect to flux as system size increases. In addition, we
observe a characteristic periodic modulation with offset
charge as we tune the device between regimes with dif-

ferent levels of protection.
A variety of qubit designs with intrinsic protection

against decoherence have been studied previously [3, 4],
including rhombi arrays [5–7], the 0−π qubit [8–10], the
two-Cooper-pair tunneling qubit [11], and the bifluxon
qubit [12]. Similar to previous protected qubit designs,
our device is based on π-periodic Josephson elements
[13], for which the Josephson energy is proportional to
cos 2ϕ, where ϕ is the superconducting phase difference
across the element. In this case, charge transport con-
sists of coherent tunneling of 4e, as opposed to 2e for a
conventional junction. We implement each element as a
plaquette formed from a dc Superconducting QUantum
Interference Device (SQUID), consisting of two conven-
tional Josephson junctions and a non-negligible loop in-
ductance. When flux biased at frustration, Φ0/2 (Φ0 ≡
h/2e), the first harmonic of the Josephson energy (pro-
portional to cosϕ) vanishes. This leaves a second order
term E2 cos 2ϕ, with sequential minima separated by π;
E2 depends on the Josephson energy of the individual
junctions EJ and the energy of the SQUID inductance
EL. The phase ϕ is thus a compact variable residing on
a circle. Biasing below (above) Φ0/2 raises (lowers) the
π wells relative to the 0 wells [Fig. 1(b,d)]; for flux bias
at 0 mod Φ0, the potential becomes proportional to cosϕ,
as in a conventional junction (see Supplement, Sec. I).

For a single plaquette biased at Φ0/2 with a large ca-
pacitive shunt Csh [Fig. 1(a)], tunneling between the 0, π
wells is suppressed. In the phase basis, wavefunctions
localized in the 0, π wells are thus disjoint and well pro-
tected against bit-flip errors. At the same time, the wave-
functions are spread out in the charge basis, correspond-
ing for the 0(π) states to superpositions of even (odd)
multiples of Cooper pairs on the logical island where the
plaquette connects to Csh. For bias away from frustra-
tion, the energy levels disperse linearly [Fig. 1(e)], with
no protection against phase flips due to flux noise.

We next consider concatenation of multiple plaquettes
while maintaining the large shunt Csh across the array.
At double frustration, when two plaquettes are simulta-
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FIG. 1. Concatenation of π-periodic plaquettes. (a) Schematic of single plaquette shunted by Csh. (b) cos 2ϕ potential at
frustration (∆Φ = Φ− Φ0/2 = 0) with localized wavefunctions in 0 and π wells. (c) Sketch of CW and CCW tunneling paths
for ϕ going between 0,π wells indicated by blue/red dots. (d) Potential for ∆Φ < 0. Here, π wells are higher in energy than 0
wells. (e) Linear flux dispersion of 0 and π levels for vanishing tunnel splitting. (f) Schematic of two plaquettes shunted by Csh
with small capacitance Cisl from intermediate island to ground. Potential with respect to phase across each plaquette displayed
on (g) contour plot, and (h) surface of torus; blue (red) lines correspond to hybridized even (odd) parity states; arrows indicate
CW/CCW tunneling paths between wells of same parity. (i) 1D cuts of potential between 00 and ππ wells (left) and 0π and π0
wells (right) at double frustration with hybridized wavefunctions for symmetric (blue/red) and antisymmetric (green/purple)
superpositions. (j) 1D cut of effective potential at double frustration. (k) Quadratic dispersion of even (odd)-parity levels and
flat dispersion of odd (even)-parity levels near double frustration for simultaneous scan of plaquette fluxes along ∆Φ1 = ∆Φ2

(∆Φ1 = −∆Φ2) on left (right) plot (energy-level sketches do not include higher levels within a well).

neously biased to Φ0/2, there are four minima in the two-
dimensional surface defined by the phase drops across
each plaquette: 00, ππ, 0π, π0. For the two-plaquette
circuit this has the topology of a torus, since ϕ for
each plaquette is a compact variable with 2π periodicity
[Fig. 1(g,h)]. If the capacitance of the intermediate is-
land between the plaquettes to ground Cisl is sufficiently
small, with a charging energy EislC = (2e)2/2Cisl > EJ ,
quantum fluctuations of the island phase cause hybridiza-
tion along the direction between wells of the same parity;
that is, 00 will hybridize with ππ and 0π with π0. Levels
with the same parity develop a splitting near double frus-
tration, with ground states corresponding to the symmet-
ric superpositions 00+ππ (0π+π0) for even (odd) parity.
Excited states are given by the antisymmetric superposi-
tions 00-ππ (0π-π0) for even (odd) parity; these states are
separated by an energy ∆SA from the symmetric ground
state of the same parity. The hybridized ground state
wavefunctions of opposite parity are the logical states
for the device [Fig. 1(j)] and form interlocking rings on
the torus [Fig. 1(h)]. Due to delocalization and inter-
twining of the hybridized ground state wavefunctions, lo-
cal perturbations affect the logical states symmetrically.
Larger EislC increases ∆SA and further flattens the bands
[Fig. 1(k)], thus protecting against dephasing from flux
noise.

Treating each plaquette as a spin-1/2 particle, the
∆SA splitting corresponds to an XX stabilizer term in
the Hamiltonian of frustrated plaquettes i, j: HXX =

−(∆
(ij)
SA /2)XiXj , where Xi is the Pauli σx matrix for

plaquette i. The error suppression factor Λ can be ap-

proximated as the ratio of ∆
(ij)
SA to twice the scale hZ

of dephasing fluctuations for single plaquette i, δH(t) =
hZ(t)Zi, which, for this device, will be dominated by flux
noise (for details on numerical factors, see Supplement,
Sec. XII). The large Csh still suppresses tunneling be-
tween logical states of opposite parity, thus protecting
against bit-flip errors.

In our experiments, we target a three-plaquette circuit
with EJ ∼ EL ∼ 1.5 K (kB=1), where EL is the energy

(Φ0/2π)
2
/L of the inductance L on each plaquette arm.

We aim for a charging energy of each plaquette junc-
tion EC = (2e)2/2Cj ∼ 3.5 K, where Cj is the junction
capacitance. These values can be achieved with conven-
tional Al-AlOx-Al junctions. We implement the induc-
tors with chains of large-area junctions, similar to those
used in fluxonium [14]. The shunt capacitor Csh=1.2 pF
is capacitively coupled to a coplanar waveguide resonator
with a fundamental resonance of 4.7 GHz for dispersive
readout. There are four separate flux-bias lines, each of
which couples strongly to one or two plaquettes. There
are three charge-bias lines: one to the logical island that
forms Csh, and one to each intermediate island between
plaquettes (see Supplement, Sec. II-V).

For device tune-up, we scan various pairs of flux-bias
lines while monitoring the dispersive shift of the readout
cavity. Each blue line in Fig. 2(a,b) corresponds to one
plaquette passing through frustration. A crossing of two
lines indicates double frustration; a three-way crossing
corresponds to triple frustration, with all three plaque-
ttes simultaneously frustrated. The spacing between par-
allel sets of lines defines the period Φ0. We fit the slopes
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FIG. 2. Flux biasing of multi-plaquette device. 2D flux-
modulation scans of the dispersive shift of the readout cavity
over a wide flux range for (a) PB30 vs. PB01, (b) PB23 vs.
PB12. (c) Optical micrograph of device.

and spacing of the lines to extract the inductance matrix
mapping bias levels on each flux line to net flux coupled
to each plaquette (see Supplement, Sec. VI). By invert-
ing this matrix, we determine bias parameters needed to
move along arbitrary flux vectors.

We next map out the flux dispersion of the level transi-
tions for different frustration conditions. With local flux-
biasing, we maintain some plaquettes at unfrustration
(0 mod Φ0), where the plaquette behaves like a conven-
tional Josephson element, while we scan the flux of other
plaquettes near frustration. In Fig. 3, we consider the
expected level structure and define the types of possible
transitions. Following convention, we refer to transitions
between levels in the same well as plasmons; transitions
between levels in different wells are referred to as heavy
fluxons because of the vanishingly small gap associated
with the corresponding anticrossing, a consequence of the
large effective mass from Csh. Transitions between hy-
bridized levels of the same parity but opposite symmetry,
for example, 00+ππ to 00-ππ, disperse sharply with flux;
these are known as light fluxons due to the low effective
mass in the ϕ2 = −ϕ1 direction from the smallness of
Cisl.

To perform spectroscopy, we drive a microwave probe
tone into the charge bias line coupled to Csh while mon-
itoring the dispersive shift of the cavity. For scans near
single frustration, we initialize the circuit in the π well
prior to each spectroscopy pulse by setting the bias to
0.1 Φ0 from frustration, thus moving out of the protected
space; we then quickly ramp the bias to the measure-
ment point and apply spectroscopy and readout pulses
(see Supplement, Sec. VII). In Fig. 4(a), we show single-
frustration measurements for plaquette 2. Features that
disperse gradually correspond to plasmons within the
π well where the qubit is initialized. We continue to
observe transitions out of the π well even when the de-
vice is biased past frustration, where the π well is higher
in energy than the 0 well, due to suppressed tunneling
between states of opposite parity. In addition to the 0-1,
0-2, and 0-3 transitions, we also observe transitions out
of excited states in the well, such as 1-2, 1-3, and 1-4,
due to insufficient cooling of the device into the ground
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FIG. 3. Level transitions. (a) Single plaquette schematic.
(b) Potential energy vs. ϕ at frustration (top) and 40 mΦ0

away from frustration (bottom); lines indicate example plas-
mons (red) and heavy fluxons (blue). (c) Concatenated pla-
quette schematic. (d) Contour plot of effective potential at
double frustration. Contours have been distorted to account
for anisotropic effective mass vs. ϕ1, ϕ2. Lines indicate plas-
mons, plus heavy and light (magnenta) fluxons. Simulated
level diagrams near (e) single and (f) double frustration.

state of the π well. Nevertheless, we observe only weak
transitions out of the 0 well, indicating that we are pre-
dominantly preparing the circuit in the π well. In addi-
tion to the plasmons, we also observe heavy fluxons that
disperse linearly with flux, which arise from transitions
between levels in the π and 0 wells. We observe similar
behavior for plaquettes 1 and 3 (see Supplement, Sec. X).

The curves included in Fig. 4(a) are generated from
detailed numerical modeling of the device energy lev-
els (see Supplement, Sec. IX). With the ability to cal-
culate the level spectrum, we adjust the circuit param-
eters to fit the measured transitions from the spectro-
scopic data (see Supplement, Sec. X). We observe ex-
cellent agreement, even capturing splittings that result
when a fluxon crosses a plasmon due to resonant tunnel
coupling between aligned levels in the 0 and π wells. In
addition, these splittings depend on the offset charge on
the Csh island [Fig. 4(e)] due to Aharonov-Casher (A-C)
interference [15, 16] between tunneling paths clockwise
(CW) or counterclockwise (CCW) in the cos 2ϕ potential
[Fig. 1(c)] (see Supplement, Sec. VIII). At single frustra-
tion, as expected, the heavy fluxon dispersion is linear
down to zero energy, thus offering no protection against
flux noise. Because only one plaquette is frustrated, there
is no hybridization, and, thus, no light fluxons.

Upon tuning to double frustration, we observe a qual-
itatively different behavior. We initialize in the ππ well
of the two-plaquette potential, then quickly ramp near
double frustration. We then scan both plaquette fluxes
in tandem along the direction between the regimes with
a global potential minimum at ππ and 00 and passing
through double frustration. Spectroscopy at plaquette
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FIG. 4. Spectroscopy at different frustration points. Spectroscopy at (a) plaquette 2 single frustration, (b) plaquette (12)
double frustration, and (c) triple frustration. Lines indicate modeled transitions with: red = plasmons, blue = heavy fluxons,
purple = light fluxons, dotted = transitions out of 0 level, dash-dotted = transitions out of 1 level, dashed = transitions out
of 2 level, and solid red line = plasmon transition between antisymmetric levels in even-parity well. (d) Optical micrograph
of plaquette chain with island charge-bias lines highlighted. (e) Repeated scans of cavity response vs. offset charge bias to
Csh island at plaquette 2 single frustration. 2D scan of spectroscopy at 0-1 transition frequency while scanning bias voltages
to gate electrodes coupled to both intermediate islands for (f) plaquette (12) double frustration and (g) triple frustration. (h)

Plot of ∆
(ij)
SA and curvature of fluxon transition between even/odd-parity ground states vs. EislC showing measured values for

plaquette (12), (23), and (13) double frustration (solid triangles) plus modeled values for a range of Cisl (open circles).

(12) double frustration shows plasmons similar to the sin-
gle frustration measurements [Fig. 4(b)]. However, unlike
single frustration, where suppressed tunneling between
the 0, π wells allows the device to remain in the π well
even after the flux is ramped well past frustration, at dou-
ble frustration, the large symmetric-antisymmetric gap

∆
(12)
SA causes an adiabatic transition from ππ to 00 upon

passing through double frustration. At higher frequen-
cies, we observe steeply dispersing light fluxons, with the

minimum at double frustration corresponding to ∆
(12)
SA

from hybridization of the 00 and ππ wells.

As with spectroscopy at single frustration, we include
curves for the various transitions from numerical model-
ing and fitting for double frustration [Fig. 4(b)]. Here,
the larger Hilbert space requires a significant increase in
computational resources. Our modeled transition curves
agree well with the measured spectroscopy, capturing
both the plasmons and heavy fluxons. We are unable
to directly drive a microwave transition between the log-
ical states in the 00+ππ and 0π+π0 wells due to the
vanishing dipole matrix element, the basis of protection.
However, the increasing flatness of the higher fluxon tran-
sitions as one moves lower in the spectrum indicates that
the logical levels will be the flattest. This can also be
seen in the blue modeled curves near the bottom of the
figure highlighting the dispersion of the logical level tran-
sition, which exhibits quadratic curvature. Additionally,
our modeling captures the light fluxons to the antisym-
metric levels.

The effectiveness of concatenation depends on Cisl of
the intermediate island between the two frustrated pla-

quettes. For plaquette (12) double frustration, ∆
(12)
SA is

2.7 GHz. At plaquette (23) double frustration, which
involves a significantly larger Cisl because of the orienta-
tion of the inductors for plaquette 2, we observe a smaller

∆
(23)
SA and a correspondingly larger curvature of the heavy

fluxon transition. ∆
(13)
SA is even smaller because of the

excess capacitance to ground of the unfrustrated plaque-
tte 2 (see Supplement, Sec. X). Figure 4(h) shows the
variation of ∆SA with EislC , including measured values of

∆
(ij)
SA for each combination of double frustration, as well

as numerically modeled values. For a typical flux noise
level, hZ for these plaquettes will be ∼2 MHz, which,

when combined with the measured ∆
(12)
SA , is consistent

with Λ ∼ 700. Note that this is an extracted parame-
ter characterizing protection in one channel: dephasing.
The complete Λ-parameter for a logical qubit must be
derived from the scaling of T1 and T2 with system size,
which is beyond the scope of this manuscript. Nonethe-
less, Λ can also be expressed as the ratio of T2 for a higher
degree of frustration relative to T2 at single frustration
(see Supplement, Sec. XII).

In addition to the symmetric/antisymmetric gap, an-
other characteristic of the stabilizer term is the periodic

modulation of ∆
(ij)
SA with offset charge on the interme-

diate island between plaquettes i and j. Destructive A-
C interference of tunneling paths in the CW and CCW
directions on the constant-parity circles for double frus-
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tration [Fig. 1(h)] causes ∆
(ij)
SA to vanish for island off-

set charge near emod 2e. We observe periodic modula-
tion with charge bias to the islands with a spectroscopy
pulse on the 0-1 transition [Fig. 4(f)] (see Supplement,
Sec. VIII, IX).

By simultaneously frustrating all plaquettes, we mea-
sure spectroscopy near triple frustration [Fig. 4(c)]. In
this case, we are unable to numerically fit the level spec-
trum since the size of the Hilbert space becomes pro-
hibitively large. Nonetheless, we are able to compute
the spectrum using parameter values from previous fits
to double and single frustration, although the calcula-
tion takes several weeks to complete. We obtain rea-
sonable agreement with the measured transitions; the
higher transitions are off by ∼5-10%, which is not un-
reasonable considering the complexity of the circuit and
the intertwined wavefunctions, given limitations on the
number of quantum states needed for the computation
to converge. Around 1.5 GHz, we observe a promi-
nent central flat feature of width ∼7 mΦ0, which is un-
characteristic for parabolic, let alone linear, dispersion.
The transition between the logical states, which can-
not be directly driven due to protection of these states
from the environment, will be even flatter. We also ob-
serve charge modulation with two different periods and
slopes corresponding to separate tuning of offset charge
on each intermediate island [Fig. 4(g)]. This is char-
acteristic of a Hamiltonian with two stabilizer terms:
HXX = −(∆

(12)
SA /2)X1X2 − (∆

(23)
SA /2)X2X3.

While our present device successfully demonstrates the
implementation of stabilizer terms in hardware, devel-
opment of protected qubits based on hybridized ground
states of opposite parity requires larger gaps to the ex-
cited states. Higher energy scales, in conjunction with
weaker radiative coupling to parasitic high-frequency
modes from a more compact Csh, perhaps achieved us-
ing a parallel-plate rather than planar design, will avoid
spurious excitations and fast quasiparticle poisoning. A
device with higher excited-state energies that can be op-
erated in the qubit regime requires larger EJ , ideally at
least 3 K. At the same time, we must maintain even
larger EC to have large ∆SA at double frustration with
the resulting flat dispersion. Achieving EJ ∼3 K and
EC ∼5 K with conventional Al electrodes is not possible
due to the small superconducting gap and the electronic
capacitance that arises when the junction plasma fre-
quency approaches the gap [17]. Thus, protected qubits
incorporating this stabilizer mechanism will need junc-
tions fabricated from a larger gap superconductor. For a
qubit with these improved parameters subject to typical
flux noise levels and dielectric loss from a parallel-plate

Csh, we project Λ &100, corresponding to T1 � 1 s and
T2 ∼ 60 ms (see Supplement, Sec. XI), well beyond cur-
rent state-of-the-art transmon and fluxonium qubits.
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L. B. Ioffe, and M. E. Gershenson, Nature Physics 5, 48
(2009).

[7] M. T. Bell, J. Paramanandam, L. B. Ioffe, and M. E.
Gershenson, Physical Review Letters 112, 167001 (2014).

[8] P. Brooks, A. Kitaev, and J. Preskill, Phys. Rev. A 87,
52306 (2013).

[9] P. Groszkowski, A. Di Paolo, A. Grimsmo, A. Blais,
D. Schuster, A. A. Houck, and J. Koch, New Journal
of Physics 20, 043053 (2018).

[10] A. Gyenis, P. S. Mundada, A. Di Paolo, T. M. Hazard,
X. You, D. I. Schuster, J. Koch, A. Blais, and A. A.
Houck, PRX Quantum 2, 010339 (2021).

[11] W. Smith, A. Kou, X. Xiao, U. Vool, and M. Devoret,
npj Quantum Information 6, 1 (2020).

[12] K. Kalashnikov, W. T. Hsieh, W. Zhang, W.-S. Lu,
P. Kamenov, A. Di Paolo, A. Blais, M. E. Gershenson,
and M. Bell, PRX Quantum 1, 010307 (2020).

[13] W. C. Smith, M. Villiers, A. Marquet, J. Palomo, M. Del-
becq, T. Kontos, P. Campagne-Ibarcq, B. Douçot, and
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Supplementary Information: Hardware implementation of quantum stabilizers in
superconducting circuits

I. π-PERIODIC JOSEPHSON ELEMENTS FROM DC SQUIDS

In our device, we implement each π-periodic Josephson element with a plaquette formed from a dc Superconducting
QUantum Interference Device (SQUID), consisting of two conventional Josephson junctions and a non-negligible loop
inductance [Fig. S1(a)]. Each junction has a critical current I0 and EJ = Φ0I0/2π; the inductance in each arm
of the SQUID L is related to the inductive energy EL = (Φ0/2π)2/L. In order to understand the origin of the
cos 2ϕ potential, we consider the two-dimensional potential energy landscape as a function of the two junction phases,
δ1 and δ2, which is determined by EJ , EL, and the external flux bias Φex [S1]. For now, we consider symmetric
plaquettes where both junction critical currents are identical; later in this section we will consider the effects of
junction asymmetry. Following convention for dc SQUIDs we plot the potential energy in terms of the common-mode
and differential phase variables: δp = (δ1 + δ2)/2 and δm = (δ2 − δ1)/2. The phase dependence of the Josephson
energy for each junction results in a 2D washboard pattern of potential minima. At the same time, the inductive
energy associated with circulating currents flowing through the inductors corresponds to a parabolic sheet with its
minimum along a line running parallel to δp. Changing Φex shifts where the minimum of this inductive parabolic
sheet falls with respect to the minima of the Josephson washboard, and thus determines the pattern of the global
minima in the potential.

For a flux bias at unfrustration Φex = 0 modΦ0, the minima are centered on δm = 0 and are spaced by 2π in δp
[Fig. S1(b)]. Along δm, there is only the one minimum at δm = 0 [Fig. S1(d)], corresponding to no circulating current
around the SQUID loop. Along δp for δm = 0, the potential follows a cos δp dependence. Thus, at unfrustration, the
plaquette behaves like a single Josephson junction with critical current 2I0. When flux biased at Φ0/2, the plaquette
exhibits a staggered pattern of energy minima about a line along δp for δm = π/2 [Fig. S1(c)]. Figure S1(e) shows a
linecut along a line between two adjacent minima as a function of δm; the two minima correspond to opposite senses
of circulating current around the plaquette loop, similar to a flux qubit [S2] or fluxonium [S3]. However, unlike these
other qubits, these plaquettes also have another independent phase degree of freedom from δp, which corresponds to
the phase drop across the plaquette. Along δp, the potential is simply E2 cos 2ϕ, with sequential minima separated
by π [Fig. S1(g)], where the energy scale E2 depends on the Josephson energies of the individual Josephson junctions
EJ and the inductive energy of the SQUID loop inductance EL. While the behavior described here is generic for
any dc SQUID, achieving a cos 2ϕ potential at frustration with a significant barrier height E2 requires a sufficiently
large ratio EJ/EL. In the conventional language of dc SQUIDs, screening effects are characterized by the parameter
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βL = 2LI0/Φ0 = EJ/πEL. For SQUIDs in the limit βL → 0 and perfect symmetry, the critical current of the SQUID
will modulate to zero at frustration. For such a device, not only is the first-order Josephson energy suppressed, but
E2 will be vanishingly small as well, and thus not support bound states in a cos 2ϕ potential. In order to have a
significant E2, EJ/EL must be of order unity. The dc SQUID in Fig. S1 has EJ/EL = π to highlight the development
of the π-periodicity at frustration.

We next consider deviations from this ideal π-periodic plaquette behavior. With the flux bias moved below (above)
frustration (Φ0/2), the π wells are raised above (below) the 0 wells [Fig. S2(c)].

To account for asymmetries between the two junctions in a plaquette we define α = (EJ2 − EJ1) / (EJ2 + EJ1),
where EJ1 (EJ2) is the Josephson energy of the left (right) junction. With a non-zero α, the common-mode potential
along δp for Φex = Φ0/2 has equal minima for the 0 and π wells, but now the barrier heights between wells become
asymmetric.

II. DEVICE FABRICATION

This device was fabricated on a high resistivity (≥10 kΩ-cm) silicon wafer that was given a standard RCA clean
followed by an etch step in a buffered-2% per volume HF bath to remove native oxides immediately before loading into
a vacuum chamber for the base-layer metal deposition. The base layer of 60-nm thick niobium is sputter-deposited and
is then coated with DSK101-4 anti-reflective-coating (ARC) and DUV210-0.6 photoresist before performing deep-UV
photolithography on a photostepper to define the ground plane, feedline, resonator, flux/charge bias lines, and the
logical islands. The exposed wafer is then baked at 135◦C for 90 seconds, developed with AZ 726 MiF, briefly cleaned
with an ARC etch to remove any remaining unwanted ARC and then dry etched using a BCl3, Cl2, and Ar in an
inductively coupled plasma etcher. The wafer is then subject to another buffered HF dip to remove any further oxides
that may have formed on the surface of the remaining niobium.

The next set of lithography steps creates ground straps that connect ground planes on either side of the flux,
charge, and feedlines. The first step uses lift-off resist LOR3A and then DUV210-0.6 photoresist to expose a region
underneath the intended ground straps where we deposit SiO2 to function as an insulating dielectric support for the
aluminum ground straps to follow. The SiO2 is evaporated in an electron beam evaporator at a rate 3.5 Å/s until
100 nm is deposited. The wafer is then placed in 1165 Remover (N-Methly-2-pyrrolidone (NMP)) at 65◦C to lift off
the excess SiO2 and resist and then another clean bath of NMP at 65◦C for further liftoff. The wafer is then sonicated
for 10 seconds to remove any final remaining resist and SiO2. The second layer of the ground strap process is exposed
in the same way, using LOR3A and DUV photoresist, but this time the pattern lies over the existing SiO2 and extends
further so that once developed, there is an exposed region of the niobium ground plane for the aluminum to contact.
The wafer is baked again and developed, and the ground straps are then deposited by electron beam evaporation
of aluminum (100 nm thick). The wafer is once again subject to NMP to remove the remaining resist and excess
aluminum.

Once clean, the wafer is put through a light oxygen plasma resist strip before a bilayer resist stack of MMA/PMMA
is spun for electron beam lithography to define the Josephson junctions. The Al-AlOx-Al junctions are written at
100 keV to form a standard double-angle evaporation airbridge pattern. Following development, there is a brief ion
mill step before the first electrode is deposited by electron beam evaporation. The bottom (top) electrode is 40 (80) nm
thick. Once the junctions are deposited, the wafer is covered in S1813 photoresist and then diced to (6.25 mm)2 chips.
After the dicing, the aluminum metallization is lifted off and the chips are then cleaned with a UV/ozone process
before measurement.
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III. DEVICE LAYOUT

In order to allow for local flux-biasing of the different plaquettes and charge-biasing of the various superconducting
islands, our device incorporates a series of on-chip bias lines, indicated in Fig. S3. The heart of the device contains
a chain of three plaquettes, each with two small Josephson junctions (130 nm ×110 nm) and two junction-chain
inductors (seventeen 140 nm ×1070 nm junctions in series). As discussed in the main paper, minimizing Cisl for each
intermediate island between two adjacent plaquettes is critical for successful concatenation. Thus, ideally the four
Josephson junctions in two adjacent plaquettes will all be located near the island between the plaquettes so that the
junction electrode that is closest to the island will be as short as possible and contribute a minimal amount of excess
capacitance to ground. However, in a chain of three plaquettes, this is only possible for one of the two intermediate
islands. The other island will necessarily have to be connected to the two inductors for one of the plaquettes,
and the capacitance to ground for these inductors will enhance the effective island capacitance. In addition, the
3-plaquette chain has dummy plaquettes at either end, which have the same geometry as the other plaquettes, but
the small junctions and inductor-chain junctions are intentionally shorted out. The dummy plaquettes are included
to symmetrize the geometry and minimize the inductive coupling of the on-chip flux-bias lines to the LC mode of
oscillation of the plaquette chain, sometimes referred to as the M ′ coupling, as defined in Ref. [S4].

There are four on-chip flux-bias lines for controlling the flux bias to each of the three plaquettes, with the labeling
as described in the main paper. Each flux-bias line has a coplanar geometry and splits into a T-shaped path adjacent
to the plaquette chain, with the two ends of the T connected directly to the ground plane. In order to have a
well-defined path for the return currents, and to suppress slot-line modes between different portions of the ground
plane, we fabricated superconducting ground straps across each flux-bias line in multiple locations. In addition to the
flux-bias lines, we also have three charge-bias lines for tuning the offset charge to the shunt capacitor electrode and
each of the two intermediate islands between pairs of plaquettes. These charge-bias lines are isolated from ground,
but also include similar ground straps to the flux-bias lines.

Our design also includes a pair of series dc SQUIDs between the plaquette chain and Csh that could be used for
gate operations in a future implementation of a protected qubit based on concatenated π-periodic plaquettes. For
the experiments presented here, this SQUID switch, which has separate flux-bias lines from the plaquettes, was not
used and the two loops of the SQUID switch were maintained at a flux bias of 0 mod Φ0 throughout the experiment.
At this bias point, the SQUIDs behave primarily as superconducting shorts, although we must still account for the
nonlinearity of the SQUID junctions in modeling the energy levels for our device.

The target shunt capacitance, Csh ∼ 1200 fF for our present device is rather large compared to more conventional
superconducting qubits. Nonetheless, in the present experiment, we implemented Csh with a planar superconducting
Nb electrode with a small gap to the ground plane around the perimeter. For measuring our device, we have a coplanar
waveguide (CPW) readout resonator with a fundamental resonance at 4.7 GHz. This is a 1/4-wave resonator with
one end inductively coupled to a CPW feedline that is connected to our measurement circuitry; the other end of the
resonator has a coupling capacitance Cc = 44 fF to our device.

The majority of our device is patterned in Nb, including the ground plane, bias lines, readout resonator, and shunt
capacacitor. All Josephson junctions are fabricated from a standard Al-AlOx-Al double-angle shadow-evaporation
process. As an initial attempt at superconductor gap engineering for reducing quasiparticle poisoning of the plaquette
chain, we include two patches of Al for suppressing the Nb gap underneath – one patch is at the joint between the
plaquette chain and the ground plane; the other patch is between the plaquette chain and shunt capacitor.

IV. DEVICE AND MEASUREMENT SETUP

Measurements are performed on a cryogen-free dilution refrigerator running at a temperature below 15 mK. The
device chip is wire-bonded into a machined Al sample box that is mounted on a cold-finger attached to the mixing
chamber stage and surrounded by a Cryoperm magnetic shield. The detailed configuration of our cabling, attenuation,
filtering, and shielding inside the refrigerator, and the room-temperature electronics hardware for control and readout,
is shown in Fig. S4.

V. DEVICE PARAMETERS

Establishing clear stabilizer behavior at double frustration requires plaquettes with a dominant π-periodic potential
and large quantum fluctuations in the direction of constant ϕ1+ϕ2 in the space of common-mode phases across
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FIG. S3. (a) Chip layout including on-chip diagnostic structures and launcher pads for each bias line and feedline. (b) Zoomed-
in layout of the dashed box section highlighting the location of the plaquette chain, SQUID switch, and shunt capacitor island.
Optical micrographs of plaquette chain: (c) red colorization indicates the 3 plaquettes in the chain; blue colorization highlights
the flux bias lines, (d) offset charge bias lines for each of the two intermediate islands between plaquette pairs; blue (red)
colorization indicates the charge bias line and island 1 (2). Scanning Electron Microscopy images of (e) intermediate island 1
between plaquettes 1 and 2, (f) an image of plaquette 2, including small junctions and junction chain inductors.

each plaquette. The π-periodicity comes from a dc SQUID consisting of two conventional Josephson junctions and
a non-negligible loop inductance. We implement inductors in each plaquette with chains of large-area Josephson
junctions, similar to typical fluxonium designs [S3]. The inductive energy of the junction chain can be extracted
with EL = (Φ0∆/4e)/RLn , where RLn is the junction chain resistance at room temperature. To have large quantum
fluctuations in the direction of constant ϕ1 +ϕ2 for effective hybridization between the two plaquettes, we need large
EC and EislC compared to the barrier height, which determines the coupling between the 00 and ππ wells and the
0π and π0 wells. For our device, we target EJ ∼ 1.5 K, EL ∼ 1.5 K and EC ≈ 3.5 K (kB = 1). For a junction
with large EJ and EC , if the junction plasma frequency ωp =

√
2EJEC/~ approaches 2∆ of the junction electrodes,

the junction acquires an extra capacitance from quasiparticles on either side of the junction. This specific electronic
capacitance can be expressed as Cspelec = 3~eJC/16∆2 [S5], where JC is the critical current density of the junction and
∆ is the superconducting gap. Our target EJ is ∼1.5 K and junction area is 110 nm×130 nm, and the corresponding
JC ∼4 µA/µm2 and Celec ∼ 0.3 fF. Our estimated specific geometric capacitance is ∼50 fF/µm2, so Cgeo ∼ 0.7 fF.
The total capacitance of the junction is CJ = Celec+Cgeo = 1 fF, and EC ∼4 K. Junctions of this size are close to the
lower limit where we can maintain reasonably small junction asymmetry with our fabrication. Thus, making smaller
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junctions to reduce Cgeo is not practical. The simulated geometric charging energy of each intermediate island to
ground EislC = (2e)2/2Cisl is ∼ 4.6 K for the island between plaquettes 1 and 2, and ∼ 0.74 K for the island between
plaquettes 2 and 3. The EislC is significantly smaller for the island between plaquettes 2 and 3 because the inductor
junction chains in plaquette 2 contribute to the capacitance to ground of the intermediate island. The intermediate
island also has capacitance to ground through the junction capacitors [Fig. S10], thus EC of each of the four junctions
in the two plaquettes reduces the total charging energy of the intermediate island below EislC . Thus, minimizing the
capacitance of these junctions, hence targeting large EC , is crucial for strong hybridization between plaquettes.

To estimate E2 for this device, we model a circuit that embeds a plaquette in an rf SQUID, vary the flux across the
rf SQUID loop, calculate the energy levels, and obtain the Fourier components for the lowest energy level. The E2

value then corresponds to the Fourier component for the cos 2ϕ term. The extracted E2 for this circuit is ∼ 0.05 K.
For effective concatenation, both EC and EislC need to be large compared to E2. For this target value of E2, we require
a rather large shunt capacitor with Csh=1200 fF in order to suppress single Cooper pair tunneling on/off the logical
island. The charging energy for this shunt capacitor is EshC = 0.003 K, and EshC /E2 = 0.06, so the coupling between
the even- and odd-parity states will be suppressed.

When there are small asymmetries in the circuit, particularly between the EJ values of the two junctions in a
plaquette, the even- and odd-parity states experience slightly different potentials and the computational states do not
have their minimum gap exactly at frustration. Based on our room-temperature measurements of the resistance of
nominally identical junctions, as well as low-temperature measurements of the critical current modulation depth for
dc SQUIDs fabricated with junctions that are identical to those in the plaquettes, we expect α ∼ 0.02.

VI. FLUX SCANS: CALIBRATING INDUCTANCE MATRIX

With the double SQUID switch and three plaquettes, the device has a total of five flux-tunable loops. The six
on-chip bias lines allow us to tune the flux in each of the loops independently, provided we account for the different
mutual inductances between the various bias lines and flux-tunable loops.

As described in the main manuscript, we map out the flux-bias parameter space by performing two-dimensional
scans of the dispersive shift of the readout cavity for different pairs of flux-bias lines. When the flux through one of
the loops approaches frustration, the resonance frequency of the cavity will decrease in response to the transitions of
the plaquette circuit shifting to lower frequencies. We measure transmission through the feedline at a fixed cavity
frequency near the resonance when one of the loops is frustrated. This results in high transmission when the plaquettes
are away from frustration, while near frustration, we are driving on resonance and get low transmission.

Following a series of two-dimensional scans of various combinations of pairs of flux-bias lines, as in Fig. 2(a,b) in the
main manuscript, we fit the slopes and periods of the frustration lines, then calculate the mutual inductance matrix
from the following relation:

~Φ = L~I + ~x, (S1)

where ~Φ is a length-3 vector of the plaquette fluxes, ~x is a length-3 vector of the flux offsets to each plaquette at
zero bias, ~I is a length-4 vector of the bias currents in the four plaquette flux-bias lines, and L is a 3 × 4 matrix of
the mutual inductances. The flux offsets at zero bias are due to small background magnetic flux that gets trapped in
place when the ground plane goes superconducting during the initial cooldown of the device. These flux offsets can
be stable for weeks at a time, although small changes that necessitate recalibration can occur occasionally.

For our spectroscopy measurements at different degrees of frustration for the plaquettes, we must be able to control
the fluxes to an accuracy better than 1 mΦ0. The resolution of these two-dimensional scans over multiple Φ0 is
not sufficient to determine the flux offsets and mutuals to this level. To achieve this, we zoom in near one of the
double frustration points with finer voltage steps on the two flux-bias lines [Fig. S5(a)]. Here, we see fine structure
in the feedline transmission that is symmetric around frustration that comes from higher energy levels of the device
crossing the cavity when a plaquette is tuned near frustration. We calculate the currents through the flux lines that
the applied voltages create by analyzing the resistor network that is formed by the attenuators on the line. From
the slopes and offsets relative to the symmetry points in these high-resolution flux scans, we extract the locations of
double frustration with high accuracy; in addition, we refine the calculation of the flux periods and slopes in order to
compute the mutual inductances with the required precision. Table 1 shows the extracted mutual inductance matrix
from our measurements, along with a comparison to the inductance matrix obtained from simulating the layout with
the numerical software package InductEx [S6].

Using the experimental mutual inductance matrix and vector of offset fluxes, we can apply combinations of currents
in the flux-bias lines to cancel out the various crosstalk fluxes and take steps in the pure flux direction for any plaquette
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FIG. S5. Measurements of readout cavity modulation through feedline transmission near plaquette (12) double frustration.
Colorscale corresponds to the transmission through the feedline at a fixed frequency near the readout cavity resonance: (a)
measurements with fine flux-bias steps on the PB01 and PB12 lines, (b) measurements with fine steps in the pure plaquette
1 and plaquette 2 directions based on the calibrated inductance matrix, centered on plaquette (12) double frustration.

Simulated Inductance Matrix (pH)
PB01 PB12 PB23 PB30

Plaq1 0.59 0.76 -0.17 0.11
Plaq2 0.15 -0.69 -0.55 0.24
Plaq3 0.07 -0.02 0.60 0.76
Extracted Inductance Matrix (pH)

PB01 PB12 PB23 PB30
Plaq1 0.64 0.66 -0.15 0.05
Plaq2 0.20 -0.66 -0.54 0.15
Plaq3 0.13 -0.24 0.67 0.59

TABLE 1. Inductance matrix (top) from InductEx simulations of device layout and (bottom) extracted from measurements of
two-dimensional flux scans of readout cavity.

or combination of plaquettes. Thus, we are able to scan along arbitrary vectors in the three-dimensional flux space
for the three plaquettes. Figure S5(b) is another high-resolution scan near plaquette (12) double frustration, but now
the fluxes have been orthogonalized and the axes step through the pure fluxes through plaquettes 1 and 2 while the
flux in plaquette 3 is maintained at unfrustration.

VII. SPECTROSCOPY MEASUREMENTS

For spectroscopy measurements at single frustration, before each spectroscopy pulse, we initialize the circuit in the
π well by setting the plaquette flux bias to 0.1 Φ0 away from frustration, while maintaining the other two plaquettes
at unfrustration. We then ramp the flux bias to each ∆Φ coordinate on the flux axis using a gaussian edge with a
167 ns standard deviation, idle for 5 µs, then apply a 5 µs spectroscopy pulse to the Csh charge-bias line followed
by a 5 µs cavity readout pulse [Fig. S6(a)]. For measurements at double or triple frustration, we perform a similar
initialization sequence, but in the ππ (πππ) well for double (triple) frustration.

We choose the 0.1 Φ0 initialization point so that there is a single well for the system to relax into. Initialization
points further from frustration would also produce a deep single well, but the larger flux amplitude would enhance
flux distortions on the trajectory back near frustration for the spectroscopy measurements. We determine the 30-µs
initialization time following measurements where we vary this wait time. For wait times much less than 30 µs, we
observe significant excitations out of the 0 well in subsequent spectroscopy, indicating that the system hasn’t fully
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reset into the π well. Waiting longer than 30 µs doesn’t provide any further benefit for initializing the system.

We use a 167-ns gaussian edge pulse shape so that we are moving sufficiently fast to be non-adiabatic, at least
for measurements near single frustration, but not so fast that there are significant fourier components near the qubit
transition frequency that could cause spurious excitations. With this particular edge time, following initialization in
the π well, if we ramp to a flux past frustration where the π well becomes metastable, we still observe transitions
out of the π well. The 5-µs idle time before the spectroscopy pulse is applied provides time for the flux to settle.
Flux distortions are commonly observed in low-temperature measurements with fast flux pulses, with various possible
causes, including impedance mismatches on the line and eddy currents in the normal copper traces in the sample
box [S7]. In principle, it is possible to measure these distortions and compensate for them by applying a pre-distortion
to the pulse waveform [S8]. For the measurements presented here, the short idle time is sufficient for the flux to settle,
as determined by varying this time; for short idle times, the frequencies of the spectroscopy features drift with respect
to flux, but by 5 µs these settle to an asymptotic level.
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FIG. S6. (a) Schematic of pulse sequence for spectroscopy measurements. The blue line represents the flux bias of the plaquette,
the red line indicates the timing of the spectroscopy pulse applied to the charge-bias line coupled to the Csh island, the yellow
line shows the timing of the readout pulse. (b) Spectroscopy as a function of flux at plaquette 2 single frustration. Colorscale
corresponds to the quadrature distance between the measurement of transmission through the feedline with and without a
spectroscopy tone.

Following the spectroscopy pulse, for scans near plaquette 1 or 2 single frustration, the flux bias is then brought
with a square pulse to a common readout point 10 mΦ0 to the right of frustration. For scans near plaquette 3 single
frustration, we read out at the same flux point as the spectroscopy because we need to overlap the spectroscopy pulse
with the readout pulse in this case. This is likely due to a shorter T1 lifetime for the plasmon states for plaquette 3
compared to that for plaquettes 1 and 2. For all the spectroscopy scans, we plot the quadrature distance between the
heterodyne measurement of transmission through the feedline at the cavity resonance for the readout flux bias with
and without a 5-µs spectroscopy pulse.

Figure S6(b) shows an example of a spectroscopy measurement at single frustration for plaquette 2. The features
that disperse gradually with flux correspond to the plasmon excitations within the π well where the qubit is initialized,
as described in Fig. 3 in the main paper; in addition to the 0-1, 0-2, and 0-3 transitions, we also observe transitions
out of excited plasmon levels, indicating that the device is not fully initialized into the ground state of the π well.

In addition, we observe heavy fluxon transitions that disperse linearly with flux, and with a much steeper slope
than the plasmons, that arise from transitions between levels in the π and 0 wells. We observe qualitatively similar
behavior for single frustration of plaquettes 1 and 3, as can be seen in the spectroscopy plots in Fig. S14.

For spectroscopy measurements at double and triple frustration, we add an extra step to stabilize the offset charge
on the intermediate island(s) between the frustrated plaquettes. Details on this procedure are described in the next
section.
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Simulated capacitance matrix (aF)
CBsh CB1 CB2

Islsh 57 419 353
Isl1 0 45 12
Isl2 0 27 88
Extracted capacitance matrix (aF)

CBsh CB1 CB2

Islsh 57 501 327
Isl1 0 35 8
Isl2 0 73 120

TABLE 2. Simulated and extracted capacitance matrix.

VIII. OFFSET CHARGE SCANS

As described in the main paper, Aharonov-Casher interference of the CW and CCW tunneling paths at various
degrees of frustration results in a periodic modulation of the energy-level structure with respect to the offset charge
on the Csh island and the two intermediate islands between pairs of plaquettes. The modulation with offset charge
on the Csh island is difficult to observe directly in spectroscopy because the tunnel splittings for the low-lying levels
are small. However, levels near the top of the barrier, which are also close to the readout cavity, exhibit a large
modulation that leads to a significant periodic charge tuning of the readout cavity dispersive shift. The large physical
footprint of the Csh island results in a large effective charge sensing area, so that offset charge jumps occur on a
timescale of a few minutes, as presented in Fig. 4(e) of the main paper.

For measuring the modulation with respect to offset charge on the intermediate islands between plaquettes, we
perform the spectroscopy sequence at the various combinations of double and triple frustration while applying a
spectroscopy pulse at the 0-1 transition frequency for each particular frustration point and scanning the two island
charge biases [Fig. S7]. Each of these two charge lines, CB1 and CB2, couples to the intermediate island adjacent to
it, but there is also non-negligible crosstalk to the other intermediate island. Thus, in general, we observe a periodic

modulation due to the charge sensitivity of the relevant ∆
(ij)
SA for the particular frustration point, and these modulation

features have a slope in the two-dimensional charge-bias space that depends on the capacitance between each bias
line and the intermediate island(s) between the particular pair(s) of frustrated plaquettes. At plaquette (12) double
frustration, the modulation is significantly faster with respect to CB1 because the capacitive crosstalk between CB2
and the intermediate island between plaquettes 1 and 2 is relatively weak [Fig. S7(a)]. By contrast, at plaquette (23)
double frustration, the modulation is faster with respect to both CB1 and CB2 since the junction-chain inductors of
plaquette 2 contribute to the intermediate island capacitance between plaquettes 2 and 3 and enhance its capacitance
to both charge-bias lines [Fig. S7(b)]. The modulation is even faster for plaquette (13) double frustration, since now
the effective intermediate island includes all of plaquette 2, which is unfrustrated, thus enhancing the capacitance to
both charge-bias lines [Fig. S7(c)]. At triple frustration, we observe a double charge modulation, with one set of nearly
vertical features corresponding to the modulation with respect to the offset charge on the intermediate island between
plaquettes 1 and 2, and faster, more diagonal features from the modulation with respect to the offset charge on the
intermediate island between plaquettes 2 and 3 [Fig. S7(d)]. From the slope and period of these various modulation
features, we can extract the capacitance matrix between the charge bias lines and the plaquette islands (Table 2).
These capacitances agree reasonably well with the Q3D numerical simulations of our device geometry [S9].

While the offset charge jumps on the Csh island occur every few minutes, we expect the offset charge jumps on the
intermediate islands between plaquettes to be less frequent because of the much smaller charge sensing areas [S10, S11].
In order to monitor offset charge jumps on both intermediate islands nearly simultaneously, we first scan the offset
charge bias to island 1 (between plaquettes 1 and 2) at plaquettes (12) double frustratation while plaquette 3 is biased
50 mΦ0 away from frustration; we then shift the fluxes slightly and scan the offset charge bias to island 2 (between
plaquettes 2 and 3) at plaquette (23) double frustration while plaquette 1 is biased 50 mΦ0 from frustration. We
alternate back and forth between these two scans repeatedly over 11 hours (Fig. S8). As expected, given the smaller
charge sensing areas, the offset charge on the intermediate islands jumps less frequently than on the Csh island. The
island between plaquettes 1 and 2, which has the smallest charge sensing area, is the most stable, with roughly 1 hour
between large offset charge jumps.

Despite the relative stability of the offset charge on the intermediate islands, we still need to actively stabilize the
charge for long spectroscopy scans vs. flux at double and triple frustration, such as Fig. 4(b,c) in the main paper, to
correct for occasional offset charge jumps. Thus, approximately every twenty minutes we interrupt the spectroscopy
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FIG. S7. Spectroscopy measurements at the 0-1 transition frequency while scanning the two intermediate island charge-bias
lines for: (a) plaquette (12), (b) plaquette (23), (c) plaquette (13) double frustration, and (d) triple frustration.

sequence to run a one-dimensional scan of the relevant intermediate island offset charge bias(es) while applying a
spectroscopy pulse at the corresponding 0-1 transition frequency; each scan takes about 30 seconds. We then fit the
resulting modulation signal with a cosine function to determine the appropriate adjustment to the charge bias to
apply to maintain a constant total intermediate island offset charge.

In addition to the random offset charge jumps due to charge dynamics in the qubit environment, for example,
from the impact of high energy particles [S11], the various islands of our device are also subject to quasiparticle
(QP) poisoning when a QP tunnels on or off the island. Because of the large physical footprint for the Csh island,
there will be spurious antenna resonances, as described in Refs. [S12, S13], at frequencies extending from above the
Al superconducting gap to below 100 GHz that couple resonantly to stray photons in the device environment and
generate QPs at the plaquette junctions. In Fig. S9, we show measurements of spectroscopy near the 0-3 transition
as a function of frequency and intermediate island offset charge near plaquette (12) and (23) double frustration.
In both cases, we observe a periodic charge modulation of the transition, but with two bands that are offset by e,
indicating QP poisoning on the intermediate island between the plaquettes on a timescale faster than the spectroscopy
measurement.

Such QP poisoning will need to be significantly suppressed in future devices for the successful implementation of a
protected qubit.
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FIG. S8. Simultaneous measurements of the offset charge on the intermediate islands between (a) plaquettes 1 and 2, (b)
plaquettes 2 and 3, near double frustration for (a) plaquette (12), (b) plaquette (23) over an 11-hour span. Details on the
particular measurement sequence here can be found in the text.

IX. MODELING OF ENERGY LEVELS

Modeling multi-plaquette devices is challenging – our 3-plaquette chip with a SQUID switch has eleven phase
degrees of freedom, and the size of the truncated Hilbert space is ∼ 2×105. Instead of choosing generalized coordinates
manually, we use the SuperQuantPackage [S14] to model the energy level spectra of the devices.

The SuperQuantPackage software framework was developed by Andrey Klots with the supervision of Lev Ioffe.
This package is capable of modeling the energy spectrum of superconducting circuits with arbitrary configurations of
Josephson junctions, capacitors, and inductors. The original flux coordinates of the nodes undergo a linear transfor-
mation that splits them into two classes: oscillator-like coordinates for which we choose a harmonic oscillator basis,
and charge coordinates that correspond to clusters of nodes with quantized net charge and for which a natural charge
basis is used. This automatically diagonalizes the inductive and capacitive parts of the Hamiltonian. At the same
time, Josephson terms of the Hamiltonian assume a relatively simple and sparse form. Automatic assignment of
physically meaningful coordinates does not require labor-intensive manual symmetry analysis of each configuration
of all studied complex circuits. Meanwhile, it allows for efficient diagonalization of the Hamiltonians and relatively
quick numerical convergence.

Despite this optimization of the numerics, modeling the full circuit of our most complex devices [Fig. S10(a)] would
require at least several months on the most powerful processors available to our research group. Thus, we must devise
strategies for simplifying the modeled circuit to make the calculation practical. A plaquette or SQUID biased at
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frustration modeling, (d) triple-frustration modeling.

unfrustration behaves like a superconducting inductive short with an effective shunt capacitance. For example, when
modeling single frustration, we simplify the circuit to a single plaquette connected in series with a LC resonator that
represents the other unfrustrated plaquettes and SQUID-switch elements [Fig. S10(b)]. The LC resonator inductance
and capacitance are shown in Fig. S10(b) as Lextra and Cextra. As shown in Fig. S10, each plaquette contains two
arms, each having one Josephson junction in series with a linear inductor. The Josephson junction is characterized
by EJ and EC , where EJ is the average energy of the Josephson junctions and EC is the charging energy set by
the junction capacitance. The linear inductor is characterized by EL and ECL, where EL is the average inductive
energy of the junction-chain inductor and ECL is the charging energy across the junction-chain inductor. From our
fabrication uniformity tests, our nominally identical junctions exhibit a spread in EJ of a few percent. We account
for this asymmetry between the two junctions in a plaquette with the parameter α = (EJL − EJR)/(EJL + EJR),
with EJL and EJR the Josephson energy of the left and right junction, respectively. Each arm has capacitance to
ground, and this is characterized by Cint. Csh is the capacitance of the shunt. We introduce the parameter Lfactor
to account for variations in Lextra due to small flux offsets in the bias of the nominally unfrustrated plaquettes or
SQUIDs. After this, we can input the circuit elements in the SuperQuantPackage.

The matrix is typically quite sparse, thus we can use the scipy.sparse.linalg.eigsh() function to find the eigenvalues
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FIG. S12. Double plaquette flux dispersion with different intermediate island capacitance (a) Cisl = 1 fF, which results in
strong hybridization and ∆SA ≈ 2.9 GHz. (b) Cisl = 5 fF. The hybridization is reduced and ∆SA ≈ 1.3 GHz. (c) Cisl = 10 fF.
The hybridization is significantly suppressed. ∆SA ≈ 0.5 GHz, and the flux dispersion is close to linear. (d) Cisl = 50 fF. The
hybridization is almost suppressed, the ∆SA ≈ 0 GHz, and the flux dispersion is essentially linear.

and eigenvectors efficiently. This function only requires calculating the first few lowest eigenvalues, so the calculation
speeds up. Typically, we only require the first ∼16-32 eigenvalues, but when we need to calculate the transitions
involving the readout cavity, we need to calculate the first 40 eigenvalues.

The next step is finding the minimum number of states for each coordinate. We start by using three states for each
cyclic coordinate and one state for each oscillator coordinate. We then vary the number of states from 1-20 for each
coordinate, while tracking how the transition frequencies change. When the transition frequencies change by less than
5%, we choose the corresponding number of states for that particular coordinate for the next iteration. Using the new
number of states, we repeat the same procedure until the process converges. In Fig. S11, we show the convergence
for each of the coordinates as a function of the number of states for double frustration.

We model single frustration by considering a single plaquette connected in series with an LC circuit [Fig. S10(b)].
For double frustration, we model the unfrustrated elements as a single LC circuit in series with the two plaquettes
that are modeled near double frustration [Fig. S10(c)].
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FIG. S13. Simulation of intermediate island charge modulation at double frustration for (a) α = 0 (even- and odd-parity levels
are on top of each other) with levels crossing at 1emod2e and the symmetric-antisymmetric gap closing because of complete
destructive interference; (b) α of plaquette 1 is 0.01, α of plaquette 2 is 0.03; here, both of the gaps for even- and odd-parity
states are not fully closed at 1emod2e due to incomplete destructive interference.

A. Double plaquette flux dispersion vs. intermediate island capacitance

We modeled double frustration flux dispersion with different intermediate island capacitance, and we present some
of these results in Fig. S12. When Cisl = 1 fF, the wavefunction is hybridized strongly between the 00 and ππ wells,
resulting in a large ∆SA ≈ 2.9 GHz and rather flat ground-state energy band [Fig. S12(a)]. The ground state energy
band is relatively flat near frustration. When Cisl = 5 fF, the effective mass along this direction is larger, but there
is still somewhat effective hybridization between the 00 and ππ well [Fig. S12(b)]. In this case, ∆SA ≈ 1.3 GHz,
and the energy band curvature is larger. When Cisl = 10 fF, the hybridization is significantly weaker [Fig. S12(c)].
∆SA ≈ 0.5 GHz and the antisymmetric level is now lower than the first excited plasmon state. Also, the energy bands
have a nearly linear dispersion near double frustration. When Cisl = 50 fF, the effective mass is so large that all
four wells are nearly independent with vanishing coupling between them [Fig. S12(d)]; ∆SA ≈ 0 GHz and the flux
dispersion near double frustration is essentially linear.

B. Double plaquette charge dispersion at double frustration

With effective hybridization at double frustration, the splitting between symmetric and antisymmetric levels exhibits
Aharonov-Casher interference, based on the offset charge bias Qisl of the intermediate island between the frustrated
plaquettes (Fig. S13). When α = 0, the symmetric/antisymmetric energy levels for both even and odd parity have
4e periodicity. When the symmetric and antisymmetric energy levels cross at 1emod2e, the gap closes [Fig. S13(b)],
because the even- (odd-) parity wavefunctions both experience a cos 2ϕ potential. When α of plaquette 1 is 0.01 and
α of plaquette 2 is 0.03 [Fig. S13(c)], both of the gaps for even- and odd-parity states are not fully closed at 1emod2e
due to incomplete destructive interference. When we bias the island charge at 0emod2e, the transition between the
even- and odd-parity logical states is first-order insensitive to charge noise on the intermediate island.

C. Structureless plaquette model

Modeling a fully-structured three-plaquette circuit is computationally expensive, with 11 nodes [Fig. S10(d)], and
each node requires several charge states. The matrix size is 189,000×189,000, and thus requires ∼300 GB of RAM
and takes weeks to calculate the energy levels, even with processors with 40 cores. As an alternative, we can use the
stuctureless plaquette model to approximate the full-structure plaquette model.

We first connect one arm of the plaquette to form a loop, then vary the flux in this loop to obtain the potential
of this arm. We next extract the Fourier components of this potential. In the structureless plaquette model, we
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replace the Josephson potential with the potential extracted from one arm of the plaquette. Thus, we do not need
the linear inductors in the circuit, which reduces the number of effective nodes from 11 to 5, and the matrix size
is now 7,000×7,000. We add a renormalization factor in the junction capacitance to simulate the effect of higher
internal levels. The need for this renormalization stems from the fact that the gap separating the potential energy of
a single plaquette from the plaquette’s higher internal states is created by a massive Dirac-like Hamiltonian, which
makes the flux particle effectively chiral. This chirality impedes tunneling, but cannot be implicitly accounted for in
the structureless model. We mimic that by replacing this chiral property of a flux particle by increasing its effective
mass by a renormalization factor that is fitted numerically by comparing structureless and full-structure plaquettes.
For high internal excited state, the phase particle is less chiral and the renormalization factor is ∼ 1.5 and low-lying
internal excited states make the flux particle more chiral and yield a renormalization factor from ∼ 2 to ∼ 3.5 in
the most unfavorable cases. We find the structureless plaquette model has a good agreement with the full-structure
plaquette near frustration. We thus use the strucureless plaquette model for the remainder of this section.

D. Triple-frustration modeling

We model the triple-frustration flux dispersion for a simultaneous scan of the flux bias to each plaquette along a
line from 000 to πππ in Fig. S17. In Fig. S17(a), at tripled frustration, the computational states are a superposition
of even-parity wells (000, 0ππ, π0π, ππ0) and a superposition of odd-parity wells (πππ, 00π, 0π0, π00). In the ideal
case of symmetric plaquettes and small flux offsets, the nearly-degenerate computational states are (|000〉+ |0ππ〉+
|π0π〉 + |ππ0〉) ± (|πππ〉 + |π00〉 + |0π0〉 + |00π〉) that correspond to even and odd charge parities. However, as we
go away from the protected regime, the computational states turn into even (|000〉+ |0ππ〉+ |π0π〉+ |ππ0〉) and odd
(|πππ〉+ |π00〉+ |0π0〉+ |00π〉) flux states. A few mΦ0 away from triple frustration, the lowest energy level corresponds
to the wavefunction localized only in the 000 or πππ well. The second lowest levels correspond to a superposition
of 00π, 0π0, π00 on the left and 0ππ, π0π, ππ0 on the right. The energy levels for the 0 and 1 logical states both
have negative curvature with respect to flux, so the flux dispersion of the 0-1 transition is flatter compared to double
frustration, thus further enhancing the protection against flux noise.

X. FITTING OF ENERGY-LEVEL SPECTRA

A. General fitting strategy

After extracting the plasmon, heavy fluxon, and light fluxon transitions, as well as the anticrossings from the
spectroscopy flux- and charge-dependence data, we use the single (double) plaquette model for the energy-level
spectra described in Sec. IX. to fit the single- (double-) frustration spectroscopy data. At single frustration, we fit EJ ,
EC , EL, ECL, Csh, α, and Lfactor using the model shown in Fig. S10(b). We fix Cint to be 1 fF, which is estimated
from numerical modeling with Q3D and a theoretical estimation of the effect of the junction chain capacitance to
ground. We introduce the parameter Lfactor to account for variations in Lextra due to small flux offsets in the bias
of the nominally unfrustrated plaquettes or SQUIDs. At double frustration, we fit the same parameter set as in the
single frustration case, but with the addition of Cisl. Similarly to the single frustration case, we fix Cint to be 1 fF. We
assume the two plaquettes at frustration share the same set of parameters, because the actual parameters between the
two plaquettes are typically only different by a few percent based on our test structures during the device fabrication.
This allows us to reduce the number of fitting parameters from 15 to 8, and thus makes the fitting more practical.

The cost function of our fitting procedure is
∑
nWn∆f2

n, where ∆fn is the difference between the modeled and
experimental frequencies for transition n, and Wn is the weight that we assign to transition n. The goal of the fitting
process is to minimize the cost function and find the parameter set that has less than a 10% difference between
the modeled transitions and the experimental transitions. We use the scipy.optimize.minimize function in Python to
do the fitting. We have 7 and 8 parameters for single- and double-frustration fitting, respectively. We find that the
Nelder-Mead method performs better for this fitting than gradient descent methods in terms of avoiding local minima.

With this high-dimensional fit, we need to choose the initial parameters carefully. We use the initial EJ and EL
values calculated from the Ambegaokar-Baratoff relation using the on-chip test junction resistances. The initial α of
the junctions is estimated from our test chips that each contain 6 identical junctions. As mentioned earlier, we define
the charging energy as EC ≡ (2e)2/2C. The initial EC and ECL values are calculated from the the relevant junction
areas measured with scanning electron microscopy with a total specific capacitance 70 fF/µm2. The initial Csh is
estimated from Q3D simulation. The initial Lfactor is set to 1 because our unfrustrated plaquettes are nominally
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FIG. S14. (a) Fitted energy levels for plaquette 2 single frustration with arrows indicating corresponding transitions probed
in spectroscopy measurements. Fitting of (b) Plaquette 1 , (c) Plaquette 2 and (d) Plaquette 3 spectroscopy data. The red
lines are plasmon transitions, blue lines are fluxon transitions. The dotted lines are transitions out of the |0π〉 state. The
dash-dotted lines are transitions out of the |1π〉 state. The dashed lines are transitions out of the |2π〉 state.

biased at unfrustration. We choose the initial simplex for the minimization so that it covers the possible range for
each parameter, which is typically ±5% to ±30% of the initial values.

B. Single frustration fitting

We fit the single frustration data with our single plaquette model [Fig. S10(b)]. We put equal weight on different
transitions by setting Wn = 1 for the fitting. The fit runs on a computer with a 12-core processor and takes ∼1 day
and 500 iterations to converge. In Fig. S14(c), we show the fitting of plaquette 2 single frustration. The red lines
correspond to the fitted plasmon transitions, and the blue lines correspond to the fitted heavy fluxon transitions. The
dotted lines are transitions out of the |0π〉 state, corresponding to the 0 level of the π well. The dash-dotted lines
are transitions out of the |1π〉 state. The dashed lines are transitions out of the |2π〉 state. The transitions match
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EJ
(K)

EC
(K)

EL
(K)

ECL
(K)

Csh
(fF)

α Lfactor

Plaquette 1 1.65 3.65 1.12 5.60 1160 0.03 1.1
Plaquette 2 1.65 3.67 1.11 6.36 1190 0.02 1.1
Plaquette 3 1.97 4.00 1.27 6.66 1440 0.04 0.91
Estimated
parameters

1.45 3.82 1.39 6.46 1000 0.02 1.0

TABLE 3. Single frustration fit parameters and estimated parameters from design and fabrication tests.

with the data within 10% error. In Fig. S14(a), we show the modeled energy levels using the fitting parameters and
indicate some example plasmon and fluxon transitions out of the |0π〉, |1π〉 and |2π〉 states.

In Fig. S14(b-d), we show the single frustration fitting of plaquette 1, 2, 3 single frustration. Plaquette 1 behaves
similarly to plaquette 2, and thus the fitted transitions and parameter values are similar. Plaquette 3 single frustration
behaves somewhat differently, and the fitted energy levels and parameters differ by a larger amount compared to
plaquettes 1 and 2. The fitted parameters are listed in Table 3 and they are within 20% of the parameters that we
estimate from the design and fabrication tests, although a few of the parameters for plaquette 3 have a slightly larger
discrepancy. The spectroscopy measurements at plaquette 3 single frustration are not as clean as for plaquettes 1 and
2 single frustration, thus potentially accounting for the larger variation with the estimated values.

C. Double frustration fitting

We next use the model in Fig. S10(c) to fit the double frustration data. Because the Hilbert space is ∼11 times
larger at double frustration using this model, we use a 48-core processor to do the fitting. This process takes between
4-7 days and ∼300 iterations to converge. The anticrossings between different transitions are important features to
fit because they determine the coupling between the computational states, so we put ∼20 times more weight for the
regions in the spectroscopy data that exhibit significant anticrossings. We also simultaneously fit the corresponding
charge modulation data and we only use the minimum and maximum of the charge modulation data for fitting. In
order to compensate for the relatively small number of charge modulation data points, we put ∼50 times more weight
for these features in the fitting.

In Fig. S15(b), we show the plaquette (12) double frustration data and fitted transitions. The red lines are the fitted
plasmon transitions, the blue lines are the fitted heavy fluxon transitions, and the purple lines are the fitted light
fluxon transitions. The dotted lines are transitions out of the |0ES〉 state, where E corresponds to the even-parity
hybridized well between plaquettes 1 and 2, S corresponds to the symmetric hybridized energy level of plaquettes 1
and 2, and 0 corresponds to the lowest energy level with these conditions. The dash-dotted lines are transitions out
of the |1ES〉 state and the dashed lines are transitions out of the |2ES〉 state. The red solid line is |0EA〉 → |1EA〉,
which is the transition out of the 0 state of the antisymmetric energy levels in the even-parity wells to the 1 state
of the antisymmetric energy levels in the even-parity wells. We see this transition because there is fast quasiparticle
poisoning on the intermediate islands that is faster than our measurement timescale. When we prepare the qubit in
the |0ES〉 state, the fast quasiparticle poisoning closes and opens the symmetric and antisymmetric gap randomly,
which allows the system to occasionally transfer population from the |0ES〉 to |0EA〉 states, thus leaving population
in the excited antisymmetric state. This results in the transition indicated by the solid red line in Fig. S15(b). In
Fig. S9(b), we show the plaquette (12) double frustration charge modulation data of the |0ES〉 → |3ES〉 transition at
17 mΦ0. We can clearly see two quasiparticle bands, which we indicate by the red and blue dotted lines for the fitted
transitions. We show the flux dependence of the fitted energy levels and corresponding transitions in Fig. S15(a). In
Fig. S9(c), we show the plaquette (23) double frustration charge modulation data of the |0ES〉 → |3ES〉 transition at
11 mΦ0.

In Fig. S15(b-d), we show the fit results for the flux spectroscopy at plaquette (12), (23), and (13) double frustration.
The ∆SA for (12), (23), and (13) double frustration are ∼ 2.7, 1.0, and 0.5 GHz, respectively, as expected for a
decreasing ∆SA and progressively weaker hybridization for a larger intermediate island capacitance to ground. The
fitted curves capture the transitions, anticrossings, and charge modulation to within 10%. The fitted parameters are
shown in Table 4 and are in reasonable agreement with our estimated parameters.

In Fig. S15(c,d), the solid black lines between -20 to -10 mΦ0 in the plaquette (23) and (13) double frustration
plots correspond to transitions involving the readout cavity: |0ES,n〉 → |1EA,n−1〉, where n and n− 1 indicate photon
number in the cavity.
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FIG. S15. (a) Calculated energy-level spectrum using the fitting parameters with arrows indicating the various corresponding
transitions from the spectroscopy data for plaquette (12) double frustration. Flux spectroscopy data and fitting of (b) plaquette
(12), (c) plaquette (23) and (d) plaquette (13) double frustration. The red lines are the fitted plasmon transitions, the blue lines
are the fitted heavy fluxon transitions, the purple lines are the fitted light fluxon transitions. The dotted lines are transitions
out of the 0 state of the symmetric energy levels in the even-parity wells, which we denote as |0ES〉. The dash-dotted lines are
transitions out of the 1 state of the symmetric energy levels in the even-parity wells, |1ES〉. The dashed lines are transitions
out of the |2ES〉 state. The solid black lines between -20 to -10 mΦ0 in the plaquette (23) and (13) double frustration plots
correspond to transitions involving an excitation in the readout cavity: |0ES,n〉 → |1EA,n−1〉 where n and n−1 indicate photon
number in the cavity.

D. Triple frustration modeling

We model the triple frustration data with the circuit in Fig. S10(d). The Hilbert space of this triple frustration
model is ∼100 times larger than for the double frustration model. Modeling one flux point takes ∼10 days, so it is
impossible to model several flux points and fit to the triple frustration data. We model the triple frustration energy
levels by simultaneously modeling different flux points on four virtual machines in parallel, which have 48-, 24-, 12- and
12-core processors, respectively. In each of the virtual machines, we use the multiprocess function in Python to model
different flux points in parallel so that it uses all the computational power in that virtual machine. Because fitting is
not practical here, we use the fitted parameters from the single- and double-frustration modeling, and only adjust the
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EJ
(K)

EC
(K)

EL
(K)

ECL
(K)

Csh
(fF)

α
Cisl
(fF)

Lfactor

Plaquette
(12)

1.75 3.54 1.20 6.34 1240 0.03 1.5 0.99

Plaquette
(23)

1.76 3.53 0.900 7.40 1290 0.04 5.7 1.0

Plaquette
(13)

1.73 3.48 0.903 6.62 1310 0.03 8.1 0.98

Estimated
parameters

1.45 3.82 1.39 6.46 1000 0.02 Vary* 1.0

TABLE 4. Double frustration fit parameters and estimated parameters. *The estimated Cisl for plaquette (12), (23), and (13)
double frustration are 0.81, 5.0, 5.8 fF.
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FIG. S16. Flux spectroscopy data and fitting of plaquette (12) double frustration. The orange arrows point to the four
transitions we use to estimate the uncertainty in the fit parameters.

Lfactor to account for the SQUIDs not being at exact unfrustration. Figure 4(c) in the main paper shows the triple
frustration flux spectroscopy data and modeled transitions. The red lines are the modeled plasmon transitions, the
blue line is the modeled heavy fluxon transition, and the purple line is the modeled light fluxon transition. The dotted
lines are transitions out of the 0 state of the symmetric energy levels in the even-parity wells. Based on our modeling,
we find the plasmon and light fluxon transitions are in good agreement between our modeled curves and the triple
frustration data. In general, we observe that the transitions at triple frustration have an even flatter dispersion with
respect to flux compared to double frustration.

E. Fit parameter error estimation

In general, each type of transition has a different sensitivity to the various fitting parameters for the device. In
order to estimate the uncertainty in each fitted parameter, we compute the energy level spectrum while varying each
parameter one at a time and keeping the other parameters at their best-fit values. We thus find the range over which
each parameter can be varied while keeping the transition frequencies within 10% of the measured values. In Fig. S16,
we show the four transitions we choose to estimate the fitted errors. In Table 5(a), we list the fitted errors obtained
with this method for the |0ES〉 → |3ES〉 plasmon transition at 20 mΦ0. From this table, we see the plasmon transition
is sensitive to EJ , EC , EL, Csh and Lfactor, so we are confident of the parameters extracted from fitting the plasmon
transitions. In Table 5(b), we list the fitted errors for the |0ES〉 → |2OS〉 heavy fluxon transition at 6.5 mΦ0. The
heavy fluxon transition is especially sensitive to EJ , EC , while moderately sensitive to the rest of the parameters, so
by fitting to the heavy fluxon transition, we have high confidence in the EJ , EC values, with moderate confidence in
the rest of the parameters. In Table 5(c), we list the fitted errors for the |0ES〉 → |0EA〉 light fluxon transition at
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Parameter uncertainty estimates within a 10% range based on:
EJ
(K)

EC
(K)

EL
(K)

ECL
(K)

Csh
(fF)

α
Cisl
(fF)

Cint
(fF)

Lfactor

(a) Plasmon transition (|0ES〉 → |3ES〉 transition at 20 mΦ0)
1.65
∼

1.85

3.00
∼

4.00

0.770
∼

1.35

3.50
∼

15.0

1100
∼

1400

0.0
∼
0.1

0.200
∼

6.00

0.800
∼

2.10

0.83
∼
1.1

(b) Heavy fluxon transition (|0ES〉 → |2OS〉 transition at 6.5 mΦ0)
1.73
∼

1.77

3.30
∼

3.70

1.10
∼

1.30

5.50
∼

8.00

1050
∼

1300

0.00
∼

0.04

1.26
∼

2.09

0.880
∼

1.13

0.83
∼
1.1

(c) Light fluxon transition (|0ES〉 → |0EA〉 transition at 0 mΦ0)
1.73
∼

1.77

3.45
∼

3.62

1.15
∼

1.22

5.40
∼

7.80

1000
∼

1500

0.00
∼

0.05

1.48
∼

1.66

0.970
∼

1.06

0.71
∼
1.1

(d) Anticrossing between
the |1ES〉 → |4ES〉 transition and the |1ES〉 → |2OS〉 transition at 12 mΦ0

1.71
∼

1.76

3.50
∼

3.85

1.14
∼

1.38

5.80
∼

12.5

1000
∼

1500

0.02
∼

0.06

0.980
∼

1.67

0.880
∼

1.01

0.91
∼
1.2

(e) Intersection of fitted errors estimated from four types of transitions
1.73
∼

1.76

3.50
∼

3.62

1.15
∼

1.22

5.80
∼

7.80

1100
∼

1300

0.02
∼

0.04

1.48
∼

1.66

0.970
∼

1.01

0.91
∼
1.1

TABLE 5. Fit parameter error estimation based on (a) plasmon transition, (b) heavy fluxon transition, (c) light fluxon
transition, and (d) anticrossing at flux points indicated in Fig. S16. (e) Intersection of fitted errors estimated from four types
of transitions in (a-d).

0 mΦ0. The light fluxon transition is quite sensitive to EJ , EC , EL, ECL, Cisl and Cint, so these fitted parameters
extracted from fitting the light fluxon transition have small errors. In Table 5(d), we list the fitted errors for the
anticrossing between the |1ES〉 → |4ES〉 transition and the |1ES〉 → |2OS〉 transition at 12 mΦ0. The anticrossing is
highly sensitive to EJ , EC , EL, so the errors for these fitted parameters by fitting the anticrossing are quite small.
Our fitting method fits all four types of transitions, so we are confident that the parameters of the actual chip are
within the intersection of the estimated errors extracted from these four types of transitions, as shown in Table 5(e).

XI. PROSPECTS FOR IMPLEMENTING PROTECTED QUBITS

Our experiment presented in the main paper demonstrates successful concatenation of π-periodic plaquettes through

measurements of large ∆
(ij)
SA and offset-charge tuning, characteristic of strong hybridization of frustrated plaquettes.

In order to implement a protected qubit based on this approach, we need a device that robustly maintains nearly
degenerate computational states while pushing the remaining fluxon and plasmon energy levels significantly upwards.

This means that for qubit design, we want to gain control over the three major energy scales: (1) Heavy fluxon gap
∆EO, that is also the computational gap that protects from T1-processes and charge noise, needs to be kept small; (2)
Light fluxon gap ∆SA, that determines effectiveness of concatenation and protects from flux noise and T2-processes,
needs to be kept large; (3) Plasmon gap ωpl that determines energies of unwanted low-lying plasmon states that
deteriorate initialization fidelity and facilitate thermal excitations, needs to be kept high. For determining these
energy scales, there are three primary device parameters that can be adjusted in the design: Shunt capacitance Csh;
Effective intermediate island charging energy EislC , that is determined by both the geometric ground capacitance of
the intermediate island and the effective screened capacitances of the Josephson junctions that also indirectly couple
the intermediate island to ground; E2 of an individual plaquette, that is mainly determined by a combination of
EL, EJ , EC . The table below demonstrates how the three energy gaps change as the described device parameters
increase. The entries of the table describe whether or not the gaps change in the desired direction, and whether they
change exponentially (exp) or (sub)polynomially (poly). Each entry is also accompanied by a brief explanation.
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as Csh increases as EislC increases as E2 increases

∆EO GOOD; exp BAD; weak poly GOOD, exp
lower is better interwell tunneling ↓ as mass ↑ E2 of chain slightly decreases interwell tunneling ↓ as barrier ↑

because hybridization washes out
the top of cos 2φ potential

∆SA N/A GOOD; poly BAD; poly
higher is better no strong depenence as lighter fluxons hybridize better hybridization ↓ as barrier ↑

ideally, light fluxon modes
are decoupled from Csh

ωpl BAD, poly BAD, weak poly GOOD, poly

higher is better ∝
√
E2/Csh E2 of chain slightly decreases ∝

√
E2/Csh

Note that each of these device parameters improves some energy scales, while deteriorating others. Thus, the
goal of optimization is not to just maximize some circuit parameters, but to compensate the negative effects by
tuning other parameters. For example, increasing EislC significantly improves concatenation (light fluxon modes),
but negatively, albeit weakly, affects the heavy fluxon and plasmon modes. Therefore, it is always beneficial to
increase EislC , while keeping in mind the presence of mild adverse effects. On the other hand, increasing Csh and
E2 is exponentially beneficial for the computational gap, but (sub)polynomially adversely affects concatenation (light
fluxon) and the plasmon modes. It is encouraging that adverse effects of increasing Csh and E2 are smaller than
the benefits. However, these adverse effects are not negligible and need to be treated very carefully. In addition
to these device parameters that can be controlled through design, there are also uncontrolled ones, such as the flux
noise amplitude and junction asymmetry α. However, improved concatenation protects the device against these types
of asymmetries. This means that decreasing α would also increase T2 polynomially – as a power of the number of
plaquettes minus one.
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FIG. S17. (a) Modeled energy levels near triple frustration with improved parameters, as described in text. (b) Modeled
transitions near triple frustration. (c) Zoomed-in transition plot between 0 to 0.3 GHz.

One set of parameters that provides a compromise between the competing circuit parameters needed for achieving
a qubit with excellent coherence is the following: EJ = 3 K, EL = 2 K, EC = 5 K, Csh = 1000 fF, Cisl1 = 1 fF,
Cisl2 = 3 fF, α = 0.01. Unfortunately, as discussed in the main paper, achieving these values of EJ and EC requires an
enhancement of the superconducting gap of the junction electrodes to reduce the effects of the electronic capacitance.
Reducing α from ∼0.03 in our experimental device to 0.01 will be challenging, but should be achievable with improved
control over the electron-beam lithography and thin-film growth for forming the junctions. Reducing the intermediate
island capacitances from our experimental device in the main paper to the values listed above requires minimizing
the size of the intermediate islands as well as the length of the junction chain inductors, but the levels listed here
are feasible. An alternate approach for satisfying the competing constraints involving parallel chains of concatenated
plaquettes will be discussed at the end of this section.

In addition to optimizing the device parameters as described above, the device layout must have weaker radiative
coupling to parasitic high-frequency modes to avoid spurious excitations and fast quasiparticle poisoning of the
intermediate islands. Achieving this in practice is challenging because of the large Csh. On our present device, the
planar capacitor layout for Csh required an exceedingly large physical footprint, resulting in significant low-frequency
parasitic modes that couple strongly to the qubit environment. For a future protected qubit implementation, switching
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to a parallel-plate capacitor for Csh would allow for a much more compact structure, thus pushing parasitic antenna
modes to much higher frequencies. For a conventional superconducting qubit, such as a transmon, the microwave
losses for the deposited amorphous dielectric layer in such a capacitor would result in quite poor T1 performance.
However, for a qubit formed from concatenated π-periodic plaquettes with a large Csh, the transition matrix elements
between the logical qubit states are quite small. When combined with the vanishingly small value for ∆EO, this
results is an extremely long T1, even with the large loss tangent for the deposited dielectric of Csh, as will be discussed
below in our treatment of the projected coherence times.

In order to estimate the coherence for a protected qubit based on this design with the parameters described earlier
in this section, we first compute the level spectrum for such a device at triple frustration (Fig. S17). With these EJ ,
EL, and Csh values, the separation between the logical qubit states is quite flat with respect to flux, with a minimum
separation (∆EO) of 15 kHz. The lowest plasmon transition is also pushed up to nearly 1 GHz above the ground-state

doublet. At plaquette (12) and (23) double frustration, the symmetric-antisymmetric gaps are ∆
(12)
SA = 1.5 GHz and

∆
(23)
SA = 0.9 GHz, and so are comparable with the lowest plasmon transition.
Upon computing the level spectrum near triple frustration for this set of parameters, we can estimate the qubit

coherence. For obtaining T1, we first calculate the transition matrix element for the charge operator N̂ between
the even- and odd-parity ground states (ψeven, ψodd, respectively) at triple frustration for the above parameters:∣∣∣〈ψodd | N̂ | ψeven〉∣∣∣ ∼ 1× 10−5. T1 can then be expressed as

1/T1 =
∣∣∣〈ψodd | N̂ | ψeven〉∣∣∣2∆EO tan δ. (S2)

Assuming we fabricate a parallel-plate shunt capacitor using electron-beam evaporated SiO2, which is compatible with
our current device fabrication process, the corresponding loss tangent is ∼1/300 [S15], resulting in T1 ∼ 1× 108 s. In
general, for our architecture, the T1 budget is quite high because it is determined by exponentially weak and easily
suppressable interwell tunneling. The much bigger challenge is creating flat bands to enhance T2.

For computing T2 for the device described above, we consider the flux dispersion of the energy bands from our
numerical modeling. Exactly at triple frustration, the slope with respect to flux bias vanishes and the curvature is
∼ 12 MHz/mΦ2

0. Assuming the electronics used for supplying the flux-bias currents is capable of sufficiently fine
steps, the flux resolution of our biasing will ultimately be limited by the rms flux noise level Φnoise. We calculate the
1/f -noise-limited T2 with the formula:

1

TΦ
2

≈ AΦ

h
× ∂E

∂Φ

∣∣∣∣
Φ=Φnoise

(S3)

where the flux noise is assumed to follow the power spectrum A2
Φ/f , we consider a Ramsey pulse performed imme-

diately after calibration. Taking a flux-noise power spectral density of 2µΦ0/
√

Hz at 1 Hz and integrating over 10
decades yields an rms flux noise level of 10 µΦ0.

Accounting for these various factors, we compute a flux-noise limited dephasing time TΦ
2 for single frustration,

plaquette (12) double frustration, plaquettte (23) double frustration, and triple frustration: 1.7 µs, 340 µs, 190 µs,
6.0× 104 µs, respectively.

We also consider dephasing due to charge noise at triple frustration by computing the level of fluctuations in the
splitting between the computational levels. We estimate the lower limit of TQ2 with

1

TQ2
≈ AQ ×

∆EO

e
, (S4)

where we assume a charge noise power spectrum A2
Q/f and we again, like in the case of flux noise,

assume that the Ramsey pulse is performed immediately after calibration. For a charge-noise spectral density of
2× 10−2e/

√
Hz at 1 Hz [S10, S16], we estimate a charge-noise limited dephasing time, TQ2 > 107 µs.

This timescale decreases for larger ∆EO, for example, with a smaller Csh. Thus, reducing Csh in an attempt to
increase ωpl, will eventually cause dephasing due to charge noise to become non-negligible as ∆EO increases.

In addition to the optimization of our multi-plaquette chain discussed above, there are alternative device geometries
that can mitigate the adverse effects of decreasing Csh. For example, connecting multiple plaquette chains in parallel,
as shown in Fig. S18, results in a linear increase in the overall system E2, thus raising the plasmon modes without
the need for increasing E2 of the individual plaquettes, which is helpful for maintaining strong concatenation.

This allows for the use of a smaller Csh for raising the plasmon transition frequencies without sacrificing an increase
in ∆EO. Of course, such an approach with two 3-plaquette chains will require twice as many flux bias controls
compared to a single chain, plus one more flux bias for the loop formed by the two chains.
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FIG. S18. Schematic of qubit with two parallel chains of concatenated plaquettes.

XII. Λ CALCULATION

As described in the main paper, Λ characterizes the rate at which the logical error decreases with system size. Λ
can be expressed either as the ratio of T2 between the larger and smaller system sizes, or, in the specific case of a
qubit based on concatenated plaquettes, can also be determined by ∆SA and hZ , the scale of dephasing fluctuations
for a single plaquette. In this section, we show that these two approaches are essentially equivalent. In addition,
we compute Λ for different degrees of frustration for a qubit with the optimal parameters described in the previous
section. For a given level of flux noise, TΦ

2 will be inversely proportional to the slope of the qubit transition energy
with respect to flux. Thus, computing Λ from the ratio of the T2 values will be equivalent to the inverse ratio of the
energy band slopes for the two different degrees of frustration.

For the semi-quantitative description of the system at double frustration presented in the main paper, we can treat
each plaquette as a spin-1/2 particle with an XX stabilizer term. The energy of each plaquette is Hi = −(k∆Φi/2)Zi,
where k is the slope of the transition energy with respect to flux, and ∆Φi is the flux offset from frustration for plaquette
i. In this model, the double-plaquette Hamiltonian is then:

H = −k∆Φ1

2
Z1 −

k∆Φ2

2
Z2 −

∆SA

2
X1X2. (S5)

Here, we assume the two plaquettes have the same k. The eigenvalues are

E1 = −

√(
k∆Φ1

2
+
k∆Φ2

2

)2

+

(
∆SA

2

)2

, E2 =

√(
k∆Φ1

2
+
k∆Φ2

2

)2

+

(
∆SA

2

)2

,

E3 = −

√(
k∆Φ1

2
− k∆Φ2

2

)2

+

(
∆SA

2

)2

, E4 =

√(
k∆Φ1

2
− k∆Φ2

2

)2

+

(
∆SA

2

)2

.

(S6)

The double-plaquette circuit typically has k ∼ 300 MHz/mΦ0 and ∆SA ∼ 1 GHz. Near single frustration for one of
the plaquettes, the other plaquette will have ∆Φ near 0.5 Φ0, thus (k∆Φ1/2 + k∆Φ2/2)2 � (∆SA/2)2. In this limit,
we obtain:

E1 = −|k∆Φ1

2
+
k∆Φ2

2
|, E2 = |k∆Φ1

2
+
k∆Φ2

2
|, E3 = −|k∆Φ1

2
− k∆Φ2

2
|, E4 = |k∆Φ1

2
+
k∆Φ2

2
|.

(S7)

Thus, the transition energy between the lowest two energy levels is ∆E = k∆Φ and the corresponding slope is∣∣∣∣∂∆E

∂∆Φ

∣∣∣∣
S

= k, (S8)

where S indicates single frustration.
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Near double frustration, the slope is highest in the ∆Φ1 = ∆Φ2 or ∆Φ1 = −∆Φ2 directions. Taking ∆Φ1 = ∆Φ2 =
∆Φ, the energy levels are

E1 = −

√
(k∆Φ)2 +

(
∆SA

2

)2

, E2 =

√
(k∆Φ)2 +

(
∆SA

2

)2

,

E3 = −∆SA

2
, E4 =

∆SA

2
.

(S9)

The transition energy between the lowest two energy levels is ∆SA/2−
√

(k∆Φ)2 + (∆SA/2)2, and the corresponding

slope with respect to ∆Φ is −k2∆Φ/
√

(k∆Φ)2 + (∆SA/2)2. For a 1/f flux noise level of 2 µΦ0/
√

Hz at 1 Hz, the
rms flux noise amplitude is Φnoise ∼10 µΦ0, and we take this to be the minimum precision with which one can
set the flux bias. For typical double-plaquette parameters, k ∼ 300 MHz/mΦ0 and ∆SA ∼ 1 GHz. In this limit,
∆SA/2� |(k∆Φ1/2 + k∆Φ2/2)|, and the slope of the transition energy with respect to flux at double frustration is∣∣∣∣∂∆E

∂∆Φ

∣∣∣∣
D

=
2k2∆Φnoise

∆SA
, (S10)

where D indicates double frustration. ΛDS , the decrease in the logical error rate upon going from single to double
frustration, is then

ΛDS =

∣∣∣∣∂∆E

∂∆Φ

∣∣∣∣
S

/

∣∣∣∣∂∆E

∂∆Φ

∣∣∣∣
D

= k × ∆SA

2k2∆Φnoise
=

∆SA

2k∆Φnoise
. (S11)

Thus, in this approximation, Λ defined as the ratio of T2 at double and single frustration is equal to the ratio of ∆SA

to 2hZ , where the factor of 2 accounts for the two plaquettes.
For triple frustration, the Hamiltonian for the coupled spin-1/2 model of a 3-plaquette chain is given by

H = −k∆Φ1

2
Z1 −

k∆Φ2

2
Z2 −

k∆Φ3

2
Z3 −

∆
(12)
SA

2
X1X2 −

∆
(23)
SA

2
X2X3, (S12)

assuming all three plaquettes have the same single-frustration slope k.

Finding the eigenvalues of this Hamiltonian and expanding them to third order in the limit of ∆
(12)
SA /2 �

|k∆Φ1/2 + k∆Φ2/2| and ∆
(23)
SA /2 � |k∆Φ2/2 + k∆Φ3/2|, we find the transition energy of the lowest two levels

is ∆E = (k∆Φ)3/∆
(12)
SA ∆

(23)
SA . The corresponding slope with respect to flux is∣∣∣∣∂∆E

∂∆Φ

∣∣∣∣
T

=
3k3∆Φ2

noise

∆
(12)
SA ∆

(23)
SA

, (S13)

where T indicates triple frustration.
We can then express ΛTD, the reduction in logical error rate upon going from double to triple frustration by taking

the ratio of the expressions in Eq. (S11) and Eq. (S13). Thus, for plaquette (12) double frustration, we obtain

Λ
(12)
TD =

2∆
(23)
SA

3k∆Φnoise
, (S14)

and for plaquette (23) double frustration, we obtain

Λ
(23)
TD =

2∆
(12)
SA

3k∆Φnoise
, (S15)

Then, ΛTS , the reduction in logical error rate upon going from single to triple frustration, is given by

ΛTS =
∆

(12)
SA ∆

(23)
SA

3k2∆Φ2
noise

=
3

4
Λ

(12)
TD Λ

(23)
TD . (S16)

In Table 6, we list the various energy scales and energy band parameters for the device with optimal parameters,
described in Sec. XI., as well as the TΦ

2 values calculated from the modeled energy levels. We also list the Λ values
for the various degrees of frustration, calculated both from the ratio of TΦ

2 values from the modeled energy levels
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∆EO

at 10 µΦ0

(MHz)

∆SA

(GHz)

Slope
at 10 µΦ0

(MHz/mΦ0)

Curvature
at 10 µΦ0

(MHz/mΦ2
0)

TΦ
2 (µs) ΛT2

DS Λ∆SA
DS ΛT2

TD Λ∆SA
TD ΛT2

TS Λ∆SA
TS

plaquette
2

3.7 - 380 - 1.7 - - - - - -

plaquette
(12)

6.7 1.5 1.8 1.8× 102 340 200 200 180 150 - -

plaquette
(23)

5.0 0.87 3.2 3.0× 102 190 110 120 320 270 - -

plaquette
(123)

1.5× 10−2 - 1.0× 10−2 1.2× 101 6.0× 104 - - - - 3.5× 104 3.1× 104

TABLE 6. TΦ
2 calculation from slope and curvature at 10 µΦ0 away from frustration for a protected qubit with the optimal

parameters presented in Sec. XI.. ΛT2 is calculated from the ratio of TΦ
2 values from the modeled energy levels, as described in

Sec. XI.; Λ∆SA is computed from ∆SA and hZ following Eqs. (S11,S14,S15,S16).

and from ∆SA and hZ . We see that both approaches for computing Λ are in agreement, consistent with our analysis
described above.
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