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High-fidelity, efficient quantum nondemolition readout of quantum bits is integral to the goal of quantum
computation. As superconducting circuits approach the requirements of scalable, universal fault tolerance, qubit
readout must also meet the demand of simplicity to scale with growing system size. Here we propose a fast, high-
fidelity, scalable measurement scheme based on the state-selective ring-up of a cavity followed by photodetection
with the recently introduced Josephson photomultiplier (JPM), a current-biased Josephson junction. This scheme
maps qubit state information to the binary digital output of the JPM, circumventing the need for room-temperature
heterodyne detection and offering the possibility of a cryogenic interface to superconducting digital control
circuitry. Numerics show that measurement contrast in excess of 95% is achievable in a measurement time of
140 ns. We discuss perspectives to scale this scheme to enable readout of multiple qubit channels with a single
JPM.
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I. INTRODUCTION

Over the past decade, circuit quantum electrodynamics
(cQED) has emerged as a powerful paradigm for scalable
quantum information processing in the solid state [1–4]. Here
a superconducting qubit plays the role of an artificial atom,
and a thin-film coplanar waveguide or bulk cavity resonator
is used to realize a bosonic mode with strong coupling to
the atom. Interaction between the qubit and the cavity is
described by the Jaynes-Cummings Hamiltonian [5]. Strong
interaction between the qubit and the cavity has been used
to realize high-fidelity multiqubit gates [6–9]; moreover, the
qubit has been used to prepare highly nonclassical states of the
resonator [10,11]. In the limit where the qubit is far detuned
from the cavity resonance so that � ≡ ωC − ωQ satisfies
|�| � gQ, where ωC is the cavity frequency, ωQ is the qubit
frequency, and gQ is the qubit-cavity coupling strength, the
following dispersive approximation to the Jaynes-Cummings
Hamiltonian is realized [1] (with � = 1):

Ĥeff = (ωC + χQσ̂z)â
†â − 1

2 (ωQ − χQ)σ̂z; (1)

here χQ = g2
Q/� is the dispersive coupling strength of the

resonator to the qubit, and σ̂z is the Pauli-z operator. One sees
from the first term that the effective cavity frequency acquires
a shift that depends on the qubit state. It is therefore possible to
perform a quantum nondemolition measurement of the qubit
by monitoring the microwave transmission across the cavity
at a frequency close to the cavity resonance, for example, by
using standard homodyne or heterodyne techniques [1,12].
This approach for reading out the qubit state through cavity
transmission measurements has become standard practice.

Recently much effort has been devoted to the develop-
ment of near-quantum-limited superconducting amplifiers for
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single-shot detection of the qubit state. Specific milestones in-
clude observation of quantum jumps in a transmon qubit [13],
heralded state preparation of single-qubit states to eliminate
initialization errors [14,15], deterministic preparation of entan-
gled states [16], stabilization of qubit Rabi oscillations using
quantum feedback [17], and quantum teleportation [18]. The
technology allows high readout speed [19] and entanglement
over large distances [20]. While this approach works well for a
small number of readout channels, the required superconduct-
ing amplifiers, cryogenic semiconducting postamplifiers, and
quadrature mixers entail significant experimental overhead:
the amplifiers often require biasing with a strong auxiliary
microwave pump tone which must be isolated from the
qubit circuit with bulky cryogenic isolators; moreover, there
is no clear path to integrating heterodyne detection at low
temperature to provide for a compact, scalable architecture.

An alternative approach that has not yet been considered
is to measure the state of the qubit using a photon counter. In
contrast to an amplifier, which performs a linear mapping of
input modes â,â† to output modes b̂,b̂†, a photon counter
responds to the total power of the input signal â†â in
a nonlinear fashion: the presence or absence of photons
projects the counter into one of two possible classical output
states, irrespective of the phase of the input signal. In the
optical frequency range, the prototypical photon counter is
the avalanche photodiode [21,22]: here, absorption of a single
photon creates an electron-hole pair; the reverse bias of the
pn junction sweeps the charge away from the depletion region
and impact ionization generates additional electron-hole pairs,
leading to a large and easily measured classical current.

We have recently introduced a superconducting device that
performs as a microwave-frequency analog of the avalanche
photodiode [23–25]. The detector is a Josephson junction that
is biased with a current such that the energy separation between
the ground |g〉 and first excited |e〉 states in the metastable
minima of the junction potential energy landscape is resonant
with the energy of the incident microwaves [see Figs. 1(a) and
1(b)]. Absorption of a single microwave photon promotes the
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FIG. 1. (Color online) (a) Schematic diagram of the Josephson
photomultiplier (JPM) circuit. The junction is biased with a dc current,
and microwaves are coupled to the junction via an on-chip capacitor.
In the simplest implementation, switching of the junction creates a
voltage pulse that is read out by a room-temperature comparator
circuit. (b) Junction potential energy landscape. The junction is
initialized in the ground state |g〉. An incident photon induces a
transition to the first excited state |e〉, which rapidly tunnels to the
continuum with rate γJ. (c) Counter-based measurement in cQED.
“Bright” and “dark” cavity pointer states result in binary digital
output from the JPM: “click” or “no click.” (d) In-phase (I) and
quadrature (Q) phase space portrait of the cavity state after the ring-up,
highlighting pointers to the |0〉 state in red and to the |1〉 state in blue.

junction from the |g〉 to the |e〉 state, which tunnels rapidly to
the continuum, producing a large and easily measured voltage
of order twice the superconducting gap voltage. We refer to
the detector as the Josephson photomultiplier (JPM). The JPM
provides an intrinsically broadband frequency response; as
we will show here, single-shot measurement contrast around
95%—suitable for scalable surface codes [26]—is achievable;
the detector requires no microwave biasing, facilitating wireup
of complex multiqubit circuits comprising many measurement
channels; finally, the detector produces a binary digital output
that interfaces well to scalable cold control circuitry based on
single flux quantum (SFQ) digital logic [27].

This paper is organized as follows. In Sec. II, we describe
the basic principles of the JPM and discuss detector operation.
In Sec. III, we present a detailed theoretical model of the
proposed measurement protocol, with a focus on measurement
contrast and back action. In Sec. IV, we discuss how close
this scheme comes to a quantum nondemolition (QND)
measurement, and in Sec. V we consider interactions with the
environment, taking into account the full Jaynes-Cummings
Hamiltonian between the cavity and the qubit. Section VI
is devoted to a discussion of issues related to scaling this
measurement approach to a large number of readout channels.
In Sec. VII we present our conclusions.

II. MICROWAVE PHOTON COUNTER BASED
ON A JOSEPHSON JUNCTION

A schematic diagram of the JPM is shown in Fig. 1(a). The
Josephson junction is biased in the supercurrent state with a
current Ib that is slightly below the junction critical current I0.
The potential energy landscape U (δ) for the phase difference δ

across the junction takes on a tilted-washboard form [28], with
local potential minima characterized by a barrier height �U

and plasma frequency ωp [Fig. 1(b)]. The circuit design and
bias parameters are chosen so that there is a handful of discrete

energy levels in each local minimum of the potential; the JPM
initially occupies the ground state |g〉. Microwaves that are
tuned to the junction resonance induce a transition to the first
excited state |e〉, which rapidly tunnels to the continuum. This
tunneling transition in turn leads to the appearance of a large
voltage across the junction of order twice the superconducting
gap. Absorption of a photon thus yields an unambiguous and
easily measured “click.”

The experimental protocol involves pulsing the bias point
of the JPM for a finite interval of order 10s of ns so that the
transition frequency between the |g〉 and |e〉 states is close
to the frequency of the incident photons: at this point, the
junction is in the “active” state, and there is high probability
that absorption of a photon will induce a transition to the
continuum. In the absence of resonant photons, there is a small,
nonzero probability that the JPM will transition due to quantum
tunneling from |g〉, a dark-count event. JPM intrinsic contrast
peaks for a bias such that �U/�ωp ∼ 2 for a measurement
interval that is roughly equal to the Rabi period of the coherent
drive [25,29]; for very short times, the interaction with the
drive field is too weak to induce a transition, while for longer
measurement times dark counts due to quantum tunneling
from the ground state degrade performance. In prior work,
we have demonstrated efficiencies of order 90% for coherent
drive corresponding to Rabi frequencies around 100 MHz for
junctions with extremely modest coherence times of order a
few ns [23].

In the context of qubit measurement, the utility of the JPM
is its ability to map bright and dark cavity states to two distinct
classical output states: “click” or “no click.” It hence presents a
measurement paradigm different from that of a linear amplifier
and should be discussed in different terminology [30]. For
example, the gain of a JPM at an infinitesimal input signal is
negligible as such a signal will not activate it into the voltage
state, whereas above a certain threshold the nonlinear gain is
extremely high. A performance comparison can, however, be
done on the level of the overall qubit measurement protocol.

In a conventional cQED measurement, the state of the
qubit is encoded in the quadrature amplitudes of a weak
microwave signal that is transmitted across the readout cavity.
It is possible to access these amplitudes by preamplifying
the signal using a low-noise linear amplifier followed by
homodyne or heterodyne detection; assignment of the detected
signal to the qubit |0〉 or |1〉 states is performed by subsequent
post-processing and thresholding. In the following, we analyze
an alternative protocol in which the state of the qubit is
mapped to the photon occupation of the cavity. The JPM then
provides a high-fidelity digital detector of cavity occupation
[see Figs. 1(c) and 1(d)]. The measurement provides no
information about the phase of the transmitted microwaves, or
indeed about the amplitude of the transmitted signal beyond
the digital “click”/“no click” output of the JPM. As we
show below, measurement contrast achievable with the JPM
is comparable to that achieved with quantum-limited linear
amplifiers, while the JPM provides unique advantages in
terms of scaling to a large number of measurement channels.
We note that related proposals for photon counters were put
forth recently that include both irreversible photon absorption
[31–33] and nondestructive photon detection via nonlinearity
of a transmission line coupled to transmons [34,35].
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FIG. 2. (Color online) Schematic of the three-stage measurement
protocol: the upper panel describes the relevant control, while the
lower panel represents the corresponding cavity state. (a) In the
drive stage, the cavity is driven strongly and coherently at the cavity
frequency dressed by the qubit |1〉 state, ωd = ω1 = ωC − χQ + χJ,
for a duration td = π/χQ (assuming a square pulse). This projects the
qubit onto either |0〉 or |1〉 and conditionally populates the cavity with
a large number of photons n ∼ |α1|2 when the qubit is projected onto
the |1〉 state. (b) During the measurement phase, the JPM is tuned
into resonance with the cavity and allowed to interact; a bright cavity
switches the JPM to its voltage state while a dark cavity leaves the
JPM in the supercurrent state. This conditionally squeezes the cavity
state by a small amount (not shown here). (c) In the reset stage, the
cavity is again driven coherently at ωd, conditionally displacing the
cavity to a near-vacuum state.

III. cQED MEASUREMENT WITH A MICROWAVE
PHOTON COUNTER

The basic scheme for qubit measurement with the JPM
is shown in Fig. 2. The qubit (resonating around 5 GHz)
is coupled to a readout cavity (resonating around 6 GHz).
As in the usual dispersive limit of the Jaynes-Cummings
Hamiltonian (1), the cavity acquires a dispersive shift χQ ≡
g2

Q/� that depends on the state of the qubit. For the purposes
of realizing a fast measurement, it is desirable to engineer a
dispersive shift χQ/π ≈ 10 MHz, as opposed to the smaller
dispersive shifts of order 1 MHz realized in typical cQED
experiments. The measurement proceeds in three stages:
(1) Drive stage. Here, we map the qubit state to microwave pho-
ton occupation of the readout cavity. A microwave pulse ap-
plied to the dressed frequency corresponding to qubit state |1〉
creates a “bright” cavity if and only if the qubit is in the
excited state. If the qubit is in the ground state, the cavity
acquires a nonnegligible occupation at the start of the pulse,
but it coherently oscillates back to the “dark” vacuum state
upon completion of the drive pulse. During the drive stage the
JPM idles at a frequency that is blue detuned from the cavity by
around 1 GHz. (2) Measurement stage. Here, we map photon
occupation of the cavity to the voltage state of the JPM (“click”
or “no click”). The JPM is rapidly tuned into resonance with the
cavity. A bright cavity induces a transition to the voltage state,
while a dark cavity leaves the JPM in the supercurrent state.
(3) Reset stage. It is advantageous to coherently depopulate the
bright cavity in order to circumvent the need for the cavity to
decay via spontaneous emission. However, since the depletion
of the cavity due to interaction with the JPM is a stochastic

process, so that neither the number of photons removed nor the
back action on the cavity is perfectly known or reproducible, it
is not possible to return the cavity precisely to the vacuum state.
Nevertheless, an appropriate coherent pulse can return the
cavity to a state that is close to the vacuum. The measurement
pulse sequence is shown in the upper panel of Fig. 2.

In the dispersive regime of the qubit-resonator system,
the unitary evolution of the full system is described by the
Hamiltonian

Ĥ = Ĥeff + A(t)(â + â†) − ωJ(t)

2
σ̂ J

z + gJ(âσ̂+
J + â†σ̂−

J ), (2)

where ωJ(t) is the frequency of the JPM, A(t) is the classical
drive applied to the cavity, gJ is the cavity-JPM coupling, and
Ĥeff is defined in Eq. (1). The JPM operators σ̂±

J couple the
ground and excited state of the JPM, which are separated by a
frequency ωJ(t) but do not couple to the measured state. The
JPM self-Hamiltonian contains σ̂ J

z = diag(1,−1,E). Here, the
energy of the measured state E is irrelevant once the tunneling
rates (which are not contained in this Hamiltonian as they
require interaction with an environment) have been fixed
independently. The measured state plays no role in the unitary
dynamics of the system as it only couples incoherently to all
other states, and the full dynamics of the JPM are described
by a Lindblad-type master equation.

In the following we analyze the three stages of the
measurement in detail.

A. Drive stage

The goal of this stage is to prepare a photonic state in
the cavity that is dependent on the qubit state, such that the
conditional cavity states can later be distinguished by the
JPM in the measurement stage. The JPM idles in this stage,
biased far off-resonance from the cavity such that the effective
interaction between the cavity and the JPM is dispersive, with
a dispersive shift χJ ≡ g2

J /(ωC − ωJ).
The effective Hamiltonian for the cavity becomes

ĤC = ω̃Câ†â + A(t)(â + â†), (3)

where ω̃C ≡ (ωC ± χQ + χJ). We choose a classical drive
A(t) = a0 cos (ωdt) for 0 � t � td where a0 is the drive
strength, ωd the drive frequency, and td the pulse length (for
simplicity here we assume a square pulse). By setting ωd =
ωC − χQ + χJ we obtain an effective cavity-drive detuning
δω = ω̃C − ωd that depends on the state of the qubit:

δω =
{

2χQ for qubit in state |0〉,
0 for qubit in state |1〉. (4)

For such a classical drive of duration td, the solution to
Eq. (3) is easily obtained. Depending on the state of the qubit,
the cavity will be in the coherent state |α0/1〉, with

α0 = − a0

4χQ

(
ei2χQtd − 1

)
, α1 = − ia0

2
td (5)

up to a global phase. We see that when the qubit is in state
|0〉, the cavity occupation oscillates sinusoidally at a frequency
set by the detuning of the drive pulse from the dressed cavity
resonance. On the other hand, when the qubit is in state |1〉,
the cavity occupation |α1|2 grows monotonically in time. This
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FIG. 3. (Color online) Cavity occupation as a function of the
duration of the applied drive, td, for the qubit in states |0〉 and |1〉. Here
χQ/π = 10 MHz, such that the optimal drive time is td = 100 ns.

is shown in Fig. 3, where we plot cavity occupation versus
coherent drive time for the qubit in states |0〉 and |1〉. In
order to maximize contrast between the dark and bright cavity
states to which the qubit states |0〉 and |1〉 are mapped, it is
optimal to choose td = π/χQ such that α0 = 0 at the end of
the drive stage. The length of the drive stage is therefore set
by the requirement that α0(td) = 0 and not by the input cavity
coupling, which is the inverse of the decay time of the cavity
through its input port.

We assume the system starts in the state

|
(0)〉 = |0〉C ⊗ |ψ〉Q ⊗ |0〉J, (6)

where the qubit state |ψ〉Q = a|0〉 + b|1〉 can be prepared
independently by the qubit drive line. After the drive stage,
the system is left in the state

|
(td)〉 = (a|α0〉C ⊗ |0〉Q + b|α1〉C ⊗ |1〉Q) ⊗ |0〉J, (7)

which can be verified by solving Eq. (2) analytically. In the
case that α0 = 0, the cavity has nonzero occupation only when
the qubit is in the excited state.

The drive stage can be thought of as the first step in a
quantum measurement of the qubit state, as described in the
pointer basis formalism of Zurek [36]. In this language, the
cavity states |α0/1〉 form the pointer basis that is entangled
with the qubit. Examining the reduced density matrix of the
qubit state

ρ̂Q =
( |a|2 a∗bD

ab∗D |b|2
)

, (8)

we see that qubit coherence has been suppressed by a factor
D = exp(−|α1 − α0|2), which quantifies the dephasing of the
qubit induced by the interaction with the pointer basis (cavity).
The dephasing would be complete if the pointer states were
orthogonal. Moreover, mapping of the qubit |1〉/|0〉 states
to bright/dark cavity states can be viewed as a coherent
amplification step, as the information about the qubit state is
now contained in a large number of photons. A more detailed
discussion of the consequences of this overlap on the detection
contrast and back action will be presented later.

As a result of the strong dephasing of the qubit state during
the drive stage (quantified by the factor D), our multistage
protocol explicitly exposes the role of the pre-measurement
stage in quantum nondemolition (QND) readout. In particular,
our protocol highlights the fact that in QND readout of the qubit
state, measurement of the cavity pointer states is not the major
source of qubit state dephasing. The qubit states are dephased
during the pre-measurement, when qubit states and cavity
pointer states are entangled, which in our case corresponds
to the drive stage. The main role of the subsequent pointer
state measurement (the measurement stage in our protocol) is
to break unitarity and “freeze” the qubit in a dephased state.
This distinction between pre-measurement and measurement
is less obvious in qubit readout using a continuous cavity
signal with linear amplification and heterodyne detection. The
clear distinction between pre-measurement and measurement
in our protocol allows for independent control of each stage,
which can be used to achieve higher readout fidelity (as has
been done here), and to study, both in theory and experiment,
QND measurement and the pointer basis formalism with an
explicit physical system in mind. A similar distinction between
pre-measurement and measurement exists in a readout scheme
in atomic cavity QED, albeit in a rather different parameter
regime. This scheme employs dispersive coupling between
the cavity and a traveling atom (pre-measurement) followed
by atomic state detection via ionization (measurement) to read
out the cavity state [37,38].

B. Measurement stage

After the drive stage, the qubit state information has been
transferred to the cavity occupation. In the measurement stage,
a measurement of the cavity by the JPM will reveal the state of
the qubit. During this stage, the JPM is brought into resonance
with the dressed frequency of the cavity corresponding to the
qubit |1〉 state, ωJ = ωC − χQ, in order to maximize detection
in the case that the qubit is excited. In practice, precise tuning
of the JPM bias point is not required due to the broad detection
bandwidth of the JPM [25].

The Hamiltonian during this stage is that of Eq. (2) with
A(t) = 0. In the following, we assume a cavity-JPM coupling
gJ/2π = 50 MHz. In addition, the system evolves incoherently
as a result of tunneling (both bright and dark) and relaxation of
the JPM. We consider tunneling from both the JPM excited and
ground states to the measured state, and relaxation from the
excited state to the ground state, with corresponding rates γJ,
γD, and γR, respectively. Here we take γJ = 200 MHz, γD =
1 MHz, and γR = 200 MHz; this relaxation rate corresponds
to a junction with capacitance 100 pF directly connected to
an environmental impedance of 50 . The total evolution of
the system can therefore be described by a Lindblad-type
master equation with Lindblad operators corresponding to
each incoherent process of the JPM, as outlined in more detail
in our previous work [24,25].

As the cavity-JPM coupling and bright-count rate can be
controlled independently of one another, they can be adjusted
into an optimal regime for good measurement. As explained in
more detail in our previous work [23,25], the optimal regime
for good measurement is when gJ ∼ γJ, as in this regime the
bright-count rate is large enough for a bright count to occur
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FIG. 4. (Color online) (a) Detection probability P (|α|2,tm) as
a function of measurement time tm (horizontal axis) and cavity
occupation |α|2 (color) for system parameters gJ/2π = 50 MHz,
γJ = 200 MHz, γD = 1 MHz, and γR = 200 MHz. (b) Detection
probability P (|α|2,tm) as a function of cavity occupation |α|2, both
numerical simulations and analytic fit, for tm = 25 and 50 ns.

within the occupation time of the JPM (per Rabi cycle), while
not so large as to result in a Zeno effect suppression of the
cavity-JPM interaction. The coupling and bright-count rate
chosen for the numerical simulations presented here are well
within the optimal regime for good measurement.

Starting from the output state of the drive stage, we
numerically solve the master equation for the measurement
stage to obtain the detection probability P (|α|2,tm) as a
function of cavity occupation and measurement time tm. In
the case that the qubit starts in the |0〉/|1〉 state, the detection
probability reduces to P (|α0/1|2,tm). We define the qubit
measurement contrast as the difference in detection probability
between these two cases:

C = P (|α1|2,tm) − P (|α0|2,tm). (9)

Clearly, the measurement contrast is optimized when
P (|α0|2,tm) = 0, which requires that α0 = 0 and γD = 0. The
measurement contrast has a maximal value of 1 if |α1| → ∞,
indicating a perfect measurement.

Figure 4(a) shows the detection probability as a function
of both |α|2 and tm for the system parameters previously
discussed. For all coherent states with average photon number
|α|2 > 0 we see similar behavior as a function of time,
with saturation of the detection probability around 40 ns,
irrespective of cavity occupation. The fact that the detection

probability saturates at a value less than unity is explained
by the two competing mechanisms for excitation loss in the
JPM: measurement tunneling and inelastic relaxation, only the
former of which results in a bright count. The black curve in
Fig. 4(a), α = 0, is the detection probability for the cavity
when the qubit is in the ground state, P (|α0|2 = 0,tm), and the
fact that it is nonzero is due only to dark counts, which occur
with a probability PD(0,t) = 1 − e−γDt .

In a simplified picture where energy in the detector
automatically leads to a click, we would have

P (|α|2) = PB(|α|2) + [1 − PB(|α|2)]PD, (10)

where PB(|α|2) is the bright-count probability and PD =
PD(0,t) is the dark-count probability, which we take to be
independent of α. However, the detection mechanism of a JPM
involves the coherent absorption of energy prior to a tunneling
transition to the classically observable voltage state. In the
interval following absorption of a photon but prior to tunneling,
dark counts cannot occur as the JPM is in its excited state. This
breaks the dark/bright symmetry of Eq. (10); as a result, this
equation may no longer be valid. However, as it shows how
dark counts are detrimental to measurement contrast, Eq. (10)
is a good reference point to compare against, and will still be
valid in some situations, such as when the JPM coupling rate
is smaller than the bright tunneling rate, i.e., gJ < γJ.

Figure 4(b) shows the detection probability as a function
of |α|2 for tm = 25 and 50 ns, along with an analytic fit to the
data by Eq. (10), with PB given by the curve

PB(|α|2,tm → ∞) = 1 − exp

(
−|α|2 γJ

γJ + γR

)
. (11)

See Appendix A for a derivation. The analytic curves for both
tm = 25 and 50 ns are so similar on this scale that only tm =
50 ns is plotted. As can be seen, the analytic fit is valid when
tm is sufficiently large. For small tm, Eq. (10) remains close to
correct, but the approximation for PB in Eq. (11) breaks down.

We have calculated detection probability P (|α|2,tm) and
measurement contrast versus measurement time tm for |α0|2 =
0, and |α1|2 = 10; the results are shown in Fig. 5(a). The
measurement contrast peaks at ≈95% around 40 ns, indicating
that a good choice for tm is 40 ns. At longer times the measure-
ment contrast will eventually begin to decrease, as P (|α0|2,tm)
continues to increase while P (|α1|2,tm) asymptotes to near
unity. In general, we observe that increasing α1 increases the
contrast, ultimately limited by the breakdown of the dispersive
approximation to the Jaynes-Cummings Hamiltonian.

The contrast shown in Fig. 5(a) is for one set of system
parameters, and in principle it is possible to obtain higher
values of measurement contrast by optimizing over parameter
space. Figure 5(b) shows the optimal measurement contrast
as a function of bright-count rate, γJ, for various bright states
|α1|2. The ratio of the bright and dark count rates is set by
fabrication parameters of the JPM, and therefore remains fixed
at γJ/γD = 200. However, the inelastic relaxation rate remains
fixed as γJ changes, such that γR = 200 MHz regardless of the
value of γJ. As can be seen in Fig. 5(b), within experimentally
reachable parameter regimes contrast greater than 95% is
possible.
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FIG. 5. (Color online) (a) Excited qubit detection probability
P (|α1|2,tm), ground qubit detection probability P (|α0|2,tm), and
measurement contrast versus measurement time. Here |α1|2 = 10
and |α0|2 = 0, with system parameters as before. (b) Measurement
contrast as a function of bright-count rate γJ, for various |α1|2 and
tm = 50 ns. The relaxation rate remains fixed at γR = 200 MHz,
while the dark-count rate changes such that the ratio γJ/γD = 200 is
unchanged.

Measurement contrast is ultimately limited by the possibil-
ity of misidentifying the qubit state. Misidentification of the
excited state as the ground state is due to the nonzero vacuum
component of the coherent state |α1〉 as well as to internal
photon loss. This occurs with a probability 1 − P (|α1|2,tm),
which is bounded below by e−|α1|2 (occurring when γR = 0).
Misidentification of the ground state as the excited state is the
result of a dark count (assuming α0 = 0), and the probability
of misidentification in this case is exactly PD(0,tm) discussed
earlier. The problem of misidentification, and the fact that
measurement contrast is less than unity even for γR,γD = 0, is
related to the basis of our measurement protocol and will be
discussed in more detail in Sec. IV.

After the measurement stage, if the JPM absorbs a photon
and switches out of the supercurrent state, classical emission
due to this switching process could induce relaxation in the
qubit or produce a spurious population in the readout cavity
that would spoil the reset pulse [39]. The resulting population
is proportional to the energy spectral density of the classical
current drive at the qubit or cavity frequency. A straightforward
approach to address this would be to install a microwave
isolator between the cavity and JPM, as in conventional cQED

experiments, where one inserts one or more cryogenic isolators
between the measurement cavity and the superconducting
preamplifier. The breaking of time-reversal symmetry by the
isolator allows signals to travel from the cavity to the readout
device with minimal loss, while back action noise is heavily
attenuated. However, we anticipate that this classical back
action can be greatly suppressed by an appropriate choice
of JPM parameters to suppress harmonics of the switching
transients at the qubit and cavity frequencies, or by shunting the
JPM by an appropriate admittance to prevent a full switch of
the JPM phase to the running state. Alternatively, it might also
be possible to eliminate a cryogenic isolator by incorporating
on the JPM chip tunable impedance-matching circuitry, as
this would allow for the realization of a strong impedance
mismatch between the cavity output and JPM immediately
after the end of the measurement stage.

C. Reset stage

The final stage is to remove the energy from the cavity,
ideally leaving the cavity-qubit system in the conditional states
|0〉C|0〉Q or |0〉C|1〉Q to allow for additional operations on the
qubit. This can be achieved through cavity decay by simply
waiting long enough; however, because the total cavity decay
time may be comparable to the qubit T1, it is preferable to
actively reset the cavity.

After the measurement stage, the cavity is either in the
vacuum state or the state B̂JB̂

N−1
1 |α1〉. Here, B̂J,1 are the back

action operators [24] on the cavity due to JPM tunneling
and inelastic relaxation, respectively, and N is the number
of photons removed from the cavity by the JPM. These back
action operators interpolate between the standard lowering
operator B̂ = â and the subtraction operator B̂ = ân̂−1/2 [24].
We neglect for the moment the classical back action on the
cavity due to the transient current that develops when the JPM
switches to the voltage state. As a starting point for reset, we
will assume that B̂JB̂

N−1
1 |α1〉 ≈ |αM〉 even with large γR, with

|αM|2 = Tr
[
â†âB̂JB̂

N−1
1 |α1〉〈α1|B̂†

J B̂
†N−1
1

]
, (12)

the average photon number of the cavity state after measure-
ment.

At the end of the reset stage, we desire the cavity to
be in the vacuum state independent of the qubit state, and
thus we must invert the drive stage. Consider a Hamiltonian
of the form of Eq. (3), with a more general drive A(t) =
a1 cos (ωdt + φ)�(td − t), where td = π/χQ as before. The
unitary operation applied to the cavity is then

Ûr = IC ⊗ |0〉〈0|Q + D̂(β) ⊗ |1〉〈1|Q. (13)

Here D̂(β) is the displacement operator on the cavity, with

β = −ia1td

2
e−iφ.

Thus, by choosing a1 such that (a1td)/2 = |αM| and setting
φ = (2n + 1)π,n ∈ Z, we have β = −αM. Under these condi-
tions, the operation Ûr will leave the cavity in the vacuum state
independent of the qubit state, and will do so with an operation
time tr = td, significantly shorter than the total decay time of
the cavity.
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FIG. 6. (Color online) Numerically evaluated overlap error for
the reset pulse described in the text. The number of photons N

removed from the cavity is shown in the legend.

However, after detection by a JPM the state of the cavity is
not a coherent state; thus there does not exist a displacement
operator D̂(β) that will map it identically to the vacuum state.
One can quantify the resulting deviation from vacuum by
calculating

E(α1,N ) = 1 − 1

A2
|〈0|D(−αM )B̂JB̂

N−1
1 |α1〉|2, (14)

where A is the normalization of the state after measurement.
This error will depend on the form of the back action.
Assuming all back actions can be expressed in terms of
subtraction operators as in Ref. [24], we find

E(α1,N ) = 1 − 1

PN

|〈−αM |B̂N
− |α1〉|2

= 1 − 1

PN

∣∣∣∣∣e− |αM |2+|α1 |2
2

∞∑
n=0

αn
Mαn+N

1√
n!(n + N )!

∣∣∣∣∣
2

. (15)

Here, the normalization A2 is the probability of N photons
being subtracted [40], PN = 1 − �(N,|α1|2)

�(N) , where �(N,|α1|2)
is the upper incomplete Gamma function. The error of this
reset pulse is shown in Fig. 6 for different values of N and
as a function of |α1|2. As can be seen, the maximal error
increases with increasing N , but for all N the error tends to
zero as |α1| → ∞. In reality, as the value of N is not fixed,
a better estimate for the average error can be obtained by
averaging over the error traces shown in Fig. 6. Note that if the
back action operator is closer to the standard photon lowering
operator â, this figure of merit will improve as the coherent
states are eigenstates of this operator, and can be moved to
vacuum exactly.

The possibility exists that more complicated pulse se-
quences during the reset phase will be able to map the cavity
state identically to the vacuum; however, consideration of such
sequences is beyond the scope of this work. In any case, the
error of the reset pulse shown here does not affect the success
of qubit readout.

IV. QNDness OF THE MEASUREMENT

Ideally, we would like our measurement to project the
qubit into its bare basis, {|0/1〉Q}, hence implementing a
quantum nondemolition (QND) measurement. A hallmark of
QND measurement is that a repeated measurement leads to
the same result with certainty. Our measurement scheme starts
from the dispersive Hamiltonian of Eq. (1) in the cavity ring-up
phase, which is QND in the sense that the qubit and the pointer
coupling commute. However, the process of destructive photon
absorption necessarily results in a deviation from QNDness,
which we analyze in detail below. Even in the case of an
ideal measurement (γR,γD = 0 and tm → ∞), the potential
misidentification of the two states leads to a QND error.
Starting from the state in Eq. (7), the measurement projects
the qubit conditionally onto the states

|ψ0〉 = ae−|α0|2/2|0〉Q + be−|α1|2/2|1〉Q√
|a|2e−|α0|2 + |b|2e−|α1|2

, (16)

|ψ1〉 = a
√

1 − e−|α0|2 |0〉Q + b
√

1 − e−|α1|2 |1〉Q√
|a|2(1 − e−|α0|2 ) + |b|2(1 − e−|α1|2 )

. (17)

Even for α0 = 0 these states are nonorthogonal (and not equal
to the ideal QND post-measurement states), and their overlap
is related to the overlap of the cavity pointer states |α0/1〉. This
overlap is what allows misidentification to occur, ultimately
limiting the contrast and QNDness.

If we do not condition on the measurement outcome, the
effect of a perfect QND measurement is the quantum process
defined by the map

a|0〉 + b|1〉 −→ |a|2|0〉〈0| + |b|2|1〉〈1|, (18)

which completely destroys all coherence in the qubit state,
while maintaining relative populations. We can describe this
quantum process by its Choi matrix Ĉper (see Appendix B),
and can compare this to the Choi matrix Ĉtm describing our
measurement protocol (which is a function of the measurement
time tm) using the following Choi matrix fidelity:

Ftm =

(
Tr

[√√
ĈperĈtm

√
Ĉper

])2

Tr[Ĉper]Tr
[
Ĉtm

] . (19)

As this fidelity compares the unconditional measurement
protocol, it does not contain information about the success
of the measurement (which we believe is well described by
the contrast), but instead quantifies how close the possible
qubit output states are to the desired ones. As a result, by
choosing ideal QND measurement as our reference process,
we can directly quantify the QNDness of our measurement
protocol.

As we are examining the unconditional measurement
process, any measurement time dependence in Ĉtm will be
due to changes in the back action of JPM measurement on
the cavity that change the post-measurement cavity state, and
therefore modify the coherence of the post-measurement qubit
state. However, for α1 � α0 sufficient decoherence of the qubit
state has occurred during the drive stage that the resultant
measurement time dependence of the fidelity is several orders
of magnitude smaller than the average value, and in practice
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we can set Ftm = F∞. Using Eqs. (16) and (17) we can
calculate F∞ analytically in the ideal case when γR,γD = 0
(see Appendix B):

F∞ = 1
2 (1 +

√
1 − K(α0,α1)2),

K(α0,α1) = e− 1
2 (|α0|2+|α1|2)

+
√

(1 − e−|α0|2 )(1 − e−|α1|2 ). (20)

For |α0|2 = 0 and |α1|2 = 4, we already have F∞ > 99%. For
|α1|2 = 10 as used elsewhere, F∞ > 99.99%. Ultimately, this
value of the fidelity should be considered the fundamental limit
of our protocol as it corresponds to the ideal case, ignoring both
JPM relaxation and dark counts, as well as other environmental
interactions.

When JPM relaxation is nonnegligible (γR �= 0), even for
tm → ∞ the measurement conditionally projects the qubit
onto mixed states rather than the pure states of Eqs. (16) and
(17), as even for α0 = 0, |ψ0〉 is mixed incoherently with a
|1〉〈1|Q component. Similarly, dark counts cause mixing of
the state |ψ1〉 as they incoherently add a |0〉〈0| component to
|ψ1〉. Therefore, to describe back action, we can use POVM
(positive-operator valued measure) elements for the qubit state
to describe the map onto the post-measurement state. While
full determination of these POVM elements is beyond the
scope of this work, the unconditional quantum process Ĉtm is
also directly affected by changes in the POVM elements, such
that it is quantitatively different when γR,γD �= 0. However,
the average value of the fidelity is nearly the same, and as
changes to the fidelity with measurement time are several
orders of magnitude smaller than the average value, the fidelity
is not a good measure to compare the ideal case with that for
γR,γD �= 0.

Therefore, to qualitatively study the deviations from QND-
ness introduced by JPM relaxation and dark counts, we
examine the probability that repeated measurements (within
qubit T1) will give the same measurement result. Consider
single measurement probabilities Pa , where a ∈ {0,1} is the
measurement outcome, and joint measurement probabilities
Pab, where a,b are the outcomes of the second and first
measurements, respectively. For an ideal QND measurement
as defined above, we have

P00 = P0, P01 = P10 = 0, P11 = P1. (21)

When JPM relaxation and dark counts are taken into account,
none of these relationships hold. This is generally a result of
the fact that our protocol can misidentify the qubit state (due
to dark counts, energy relaxation, or less than unit contrast), so
that the second event does not occur with unit probability. In
particular, due to dark counts P0 �= P00; similarly, due to the
probability of not detecting a photon for a given cavity state
or mistakenly measuring the vacuum component of the |α1〉
state, we have P11 �= P1. P11 can also be further modified by
imperfect reset of the cavity. The symmetry between P01 and
P10 is not broken by misidentification; however, they are both
nonzero. On top of these misidentifications, QNDness can also
be limited by corrections beyond the dispersive Hamiltonian
as discussed in the next section.

V. ENVIRONMENTAL INTERACTIONS AND
CORRECTIONS BEYOND THE DISPERSIVE

HAMILTONIAN

So far the discussion has focused on a closed qubit-
cavity subsystem. When we consider interactions with the
environment, it is apparent that the dominant effects are qubit
and cavity relaxation. The time scale of these effects depends
heavily on the frequency of the JPM, as it is most strongly
coupled to environmental modes.

During the drive and reset stages of the measurement
protocol, the JPM idles at a frequency that is far blue detuned
from the cavity or qubit resonances. As a result, the leading
order decay channel for both the cavity and the qubit is through
the cavity’s input port. If we take a cavity decay rate κ ≈
100 kHz, we find a qubit lifetime limitation of T κ

1 ≈ 2 ms for
vacuum in the cavity [41] (see Appendix C for further details),
and this T κ

1 will in fact increase with higher cavity occupation
[42], though this is a higher order effect not considered in our
evaluation. This Purcell-limited qubit T1 can only be calculated
by first considering the full Jaynes-Cummings Hamiltonian
when deriving the master equation for the coupled system,
and so it is inherently not contained in the dispersive picture.
Essentially, induced qubit T1 can be understood by observing
that the eigenstates of the full JC Hamiltonian are always
dressed (albeit weakly at strong detuning), and thus decay of
the dressing cloud can lead to decay of the eigenstate.

In addition, while spontaneous emission of the cavity
through its input port is inconsequential, emission toward the
JPM during the drive stage will degrade the preparation of the
cavity pointer states, with the dominant effect being a nonzero
occupation |α0|2 of the |0〉Q-state pointer upon completion of
the drive stage. However, this effect is very small due to the
large cavity-JPM detuning during the drive stage, and so it
only minimally affects the contrast.

During the measurement stage, the JPM is brought on
resonance with the cavity, and cavity decay through the
JPM is desirable, since it amounts to bright tunneling or
JPM relaxation. However, as the cavity-JPM states hybridize,
qubit decay through the JPM is also possible, as a result of
beyond-dispersive effects identical to those for qubit Purcell
decay discussed previously. Through a procedure similar
to that of [41], we obtain a JPM-limited qubit lifetime of
T

γR
1 ≈ 2 μs during the measurement stage for vacuum in the

cavity, considerably shorter than T κ
1 ≈ 2 ms (see Appendix C

for further details). For an occupied cavity the situation is more
complex, due to additional excitations as well as stimulated
emission channels, but we find that to lowest order in gQ/�

the qubit lifetime increases as cavity occupation increases,
and that for |α|2 = 10 one would expect a qubit lifetime of
T

γR
1 ≈ 40 μs.

However, numerical simulations [see Fig. 7(a)] indicate
that there is no appreciable qubit decay probability during
the overall measurement process. We attribute this to the fact
that the global state of the system is frozen once the JPM
is in the measured state, and since γJ � 1/T

γR
1 , this occurs

long before any appreciable qubit decay. In fact, we expect
only a 0.05% change in the qubit state due to JPM-mediated
decay (see Appendix C for further details), which is completely
washed out by other effects in Fig. 7(a). In other words,
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FIG. 7. (Color online) (a) Qubit σz expectation for the qubit
initially in the excited state versus measurement time (Jaynes-
Cummings Hamiltonian) and (b) process fidelity of qubit readout
for both the dispersive Hamiltonian and the Jaynes-Cummings
Hamiltonian. Coupling strength and tunneling rates are as used
throughout. Here |α0|2 = 0 and |α1|2 = 9.

a seemingly short induced lifetime during the measurement
stage is inconsequential if the associated relaxation channel is
only open for a short time. This implies that a working point
with a very fast bright tunneling rate is optimal.

The qubit also experiences dephasing due to low frequency
noise at the JPM with a characteristic time scale T

γJ
φ . However,

as the ideal cQED measurement protocol should maximally
dephase the qubit state, this low-frequency noise does not
affect the fidelity or measurement contrast of our protocol.

To quantify measurement degradation due to beyond-
dispersive effects, we compare the process fidelity of Eq. (19)
for dispersive qubit-cavity coupling with that for the full
Jaynes-Cummings Hamiltonian. Figure 7(b) shows the fidelity
as a function of measurement time, for similar parameters as
used throughout and |α1|2 = 9. As expected, the dispersive
fidelity changes only minimally as a function of measurement
time, while the Jaynes-Cummings fidelity both oscillates and
grows with measurement time. Crucially, the fidelity for
the full Jaynes-Cummings Hamiltonian is still approximately
98%, i.e., not significantly less than for the dispersive Hamil-
tonian. It is the focus of future study to improve this number.

Finally, we have examined both the cavity occupation
during the drive stage and the measurement contrast for the
full Jaynes-Cummings Hamiltonian. For the drive stage the
major effect is a small shift in the time td at which the cavity
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FIG. 8. (Color online) (a) Cavity occupation during the drive
stage for the full Jaynes-Cummings Hamiltonian. (b) Measurement
contrast for the dispersive Hamiltonian and the Jaynes-Cummings
Hamiltonian. As elsewhere, χQ/π = 10 MHz, gJ/2π = 50 MHz,
γJ = 200 MHz, γD = 1 MHz, and γR = 200 MHz. In both plots, the
drive strength is chosen such that |α1|2 = 9 for td = 100 ns for the
dispersive Hamiltonian.

occupation is minimized for the qubit in the ground state,
and an increase in the minimum occupation |α0|2 [Fig. 8(a)].
This results in a reduction of the contrast [as can be seen in
Fig. 8(b)]; however, this reduction in contrast is not significant
enough to seriously degrade the success of our measurement
protocol.

VI. SCALABILITY OF COUNTING MEASUREMENT

A useful multiqubit processor comprising hundreds if
not thousands of qubits will require a large number of
measurement channels with their associated wiring, filtering,
and isolation. It is therefore important not only to examine the
ultimate performance of a single measurement channel, but
also to consider prospects for scaling to many measurement
channels. From the standpoint of scalability, JPM-based
counter measurement possesses several unique advantages
compared to conventional heterodyne measurement based on
low-noise superconducting amplifiers.

The JPM requires only relatively low-bandwidth dc wiring
for biasing, thus eliminating the need for bulkier cryogenic
coaxial lines and microwave attenuators. Moreover, operation
of the JPM requires no microwave pump tone, eliminating a
major source of cost, complexity, and deleterious crosstalk in
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conventional cQED circuits. In addition, because the output
signal of the JPM is of the order of twice the superconducting
gap, no cryogenic amplifiers are needed and the JPM signal
can be detected with straightforward room-temperature elec-
tronics. Alternatively, the binary digital output of the JPM
provides a natural interface to the SFQ-logic family. Here,
classical bits are stored in the form of quantized voltage pulses
whose time integral equals the superconducting flux quantum
�0 = h/2e. Optimized SFQ circuits can be clocked at 100s of
GHz, and they offer orders of magnitude lower dissipation than
conventional CMOS logic. The integration of a classical SFQ
control circuit in the multiqubit cryostat would yield significant
reductions in power consumption, latency, and overall system
footprint.

The large intrinsic bandwidth of the JPM (approaching
1 GHz) [25] also allows for the possibility of time-domain
multiplexing. Multiple qubits, each with a separate readout
cavity at slightly different frequencies, could be interrogated
with a single JPM by selectively addressing each cavity with
drive pulses at different frequencies. While the “click”/“no
click” output of the JPM does not enable frequency-domain
multiplexing of the cavity readout, it is possible to multiplex
instead by staggering the readout of the cavities in time, with
an offset between cavity measurements of order 10s of ns.

VII. CONCLUSION

In conclusion, we have outlined a readout scheme for
superconducting quantum bits using selective cavity ring-up
and photodetection. We show that even without detailed
optimization, our measurement protocol is compatible with the
requirements of fault tolerance, with achievable measurement
contrast greater than 95% in measurement times of order
100 ns. Counter-based qubit measurement possesses distinct
advantages in terms of scalability, with simple wireup and
dc biasing requirements and the prospect of multiplexing
in the time domain. Finally, as the counter maps quantum
information to a binary digital output without the need for
room-temperature heterodyne detection and post-processing,
our scheme provides a natural interface between a supercon-
ducting quantum processor and cryogenic classical control
circuitry based on the SFQ digital logic family.
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APPENDIX A: DERIVATION OF THE ANALYTIC
EXPRESSION FOR THE BRIGHT-COUNT RATE

Following [25], we begin by assuming we have a dark-
count-free JPM coupled to a cavity in an N -photon Fock state.
A single photon in the cavity would cause a bright count with
probability P1 = γJ/(γR + γJ), where γJ is the bright tunneling
rate and γR is the inelastic relaxation rate of the JPM, as defined

before. However, if instead the JPM relaxes back to the ground
state, the second photon in the cavity will cause a bright count
with probability P2 = [γR/(γR + γJ)]P1, where the first factor
is the probability that the first photon is lost due to inelastic
relaxation. Therefore, for the nth photon, we have

Pn =
(

γR

γR + γJ

)n−1
γJ

γR + γJ
.

Summing up all probabilities for n = 1, . . . ,N , we obtain

PN = 1 −
(

γR

γR + γJ

)N

= 1 − exp

[
−N ln

(
1 + γJ

γR

)]
.

For a coherent state, we improve the estimate by averaging
over N for a state with given |α|2:

P (|α|2)=
∑ |α|2N

N !
e−|α|2PN=1 − exp

(
−|α|2 γJ

(γJ + γR)

)
.

(A1)

This analytic expression is valid for γR � γJ, assuming that all
rates are independent of the number of photons in the cavity.
This assumption implies that the photon excites the JPM faster
than both rates γR and γJ, and is valid for long measurement
times.

APPENDIX B: ANALYTIC DERIVATION OF FIDELITY
IN THE IDEAL CASE

To calculate F∞, we begin by defining the unconditional
map on the qubit state (with γD,γR = 0) using Eqs. (16) and
(17) by

E∞(|ψ〉〈ψ |) = P0|ψ0〉〈ψ0| + P1|ψ1〉〈ψ1|, (B1)

for an arbitrary initial qubit state |ψ〉 = a|0〉 + b|1〉. The
“click”/“no click” probabilities for such an input state are given
by

P0 = |a|2e−|α0|2 + |b|2e−|α1|2 , (B2)

P1 = |a|2(1 − e−|α0|2 ) + |b|2(1 − e−|α1|2 ). (B3)

In light of this, Eq. (B1) becomes

E∞(|ψ〉〈ψ |) = |a|2|0〉〈0| + |b|2|1〉〈1| + ab∗K(α0,α1)|0〉〈1|
+ a∗bK(α0,α1)|1〉〈0|, (B4)

where K(α0,α1) is as defined in Eq. (20):

K(α0,α1) = e− 1
2 (|α0|2+|α1|2) +

√
(1 − e−|α0|2 )(1 − e−|α1|2 ).

Now that the map is fully determined, we can calculate the
Choi matrix elements

[Ĉ∞]ijkl = 〈j |E∞ (|i〉〈k|) |l〉, (B5)

and find that the Choi matrix is given by

Ĉ∞ =

⎛
⎜⎝

1 0 0 K(α0,α1)
0 0 0 0
0 0 0 0

K(α0,α1) 0 0 1

⎞
⎟⎠ . (B6)
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By a similar procedure, the Choi matrix for perfect QND
measurement is given by

Ĉper =

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠ . (B7)

With both Choi matrices defined, using Eq. (19) we can
calculate the fidelity to be

F∞ = 1
2 (1 +

√
1 − K(α0,α1)2), (B8)

as in Eq. (20).

APPENDIX C: CAVITY- AND JPM-LIMITED
QUBIT LIFETIMES

We first summarize the results of [41] for a qubit coupled
dispersively to a cavity with decay rate κ; next we extend this
result to include the JPM. For a qubit coupled dispersively to
a cavity, the dressed qubit-cavity eigenstates to second order
are

|1,n − 1〉 ≈
(

1 − g2
Qn

2�2

)
|1,n − 1〉 − gQ

√
n

�
|0,n〉, (C1)

|0,n〉 ≈
(

1 − g2
Qn

2�2

)
|0,n〉 + gQ

√
n

�
|1,n − 1〉, (C2)

where |0/1,n〉 are the uncoupled eigenstates of the cavity-qubit
system and � = ωC − ωQ. We are interested in Purcell-limited
qubit relaxation, i.e., transitions from |1,n〉 to |0,n〉 mediated
by the cavity’s coupling to the external environment, which
we assume takes the standard form with the cavity coupling
operator given by X̂ = â + â†. From [41], the decay rate for
this process is given by

�1n,0n
κ = κ(�0n,1n)|〈1,n|X̂|0,n〉|2; (C3)

here κ(ω) is the coupling constant that depends on the spectral
density of the cavity’s environment, which should be evaluated
at �n0,n1 = ωQ + χQ. To lowest order in gQ/�,

|〈1,n|X̂|0,n〉|2 ≈ g2
Q

�2
. (C4)

Assuming an Ohmic spectral density and using as a reference
value the coupling constant at the uncoupled cavity frequency
κ(ωC), we have κ(ω) ≈ κ(ωC)ω/ωC, where ωC is the bare
cavity frequency, not the ultraviolet cutoff frequency of
the Ohmic spectral density [29]. Setting κ(ωC) = 100 kHz
(the input coupling to the cavity), �/2π = 1 GHz, and a
corresponding gQ that gives χQ/2π = 5 MHz, we obtain a
Purcell-limited qubit lifetime of 2 ms. To next order in gQ/�

the qubit lifetime is dependent on the cavity occupation;
however, as shown in Ref. [42], the lifetime increases for
higher photon numbers in the cavity.

When the JPM is brought on resonance with the cavity, the
cavity-JPM states hybridize, so that the eigenstates are now

|n,a〉 = 1√
2

[|n,0〉 + (−1)a|n − 1,1〉], (C5)

where the ground state |0,a〉 = |0,0〉, and the index a labels
what is normally labeled by ±. In light of this, to study qubit
relaxation via the JPM, we must examine transitions from
the two states |1,n,a〉 to the two states |0,n,b〉 via the JPM-
environment coupling operator σ̂ J

x , where now

|1,n,a〉 ≈
(

1 − g2
Q(n + 1)

2�2

)
|1,n,a〉

−gQ
√

n + 1

�
|0,n + 1,a〉, (C6)

|0,n,b〉 ≈
(

1 − g2
Qn

2�2

)
|0,n,b〉

+gQ
√

n

�
|1,n − 1,b〉. (C7)

Similar to the case for cavity-mediated decay, the decay
rates for these processes are given by

�1na,0nb
γR

= γR(�0na,1nb)|〈1,n,a|σ̂ J
x |0,n,b〉|2, (C8)

where γR(ω) is the JPM’s coupling constant with the environ-
ment. Using the fact that

〈n + 1,a|σ J
x |n,b〉 = (−1)a

2
, n > 0, (C9)

〈1,a|σ J
x |0,b〉 = (−1)a√

2
, n = 0, (C10)

and all other matrix elements are zero, we find that

〈1,n,a|σ̂ J
x |0,n,b〉 = (−1)a

gQ

2�
(
√

n − √
n + 1), (C11)

〈1,0,a|σ̂ J
x |0,0,b〉 = (−1)a

gQ√
2�

, (C12)

to first order in gQ/�. As before, assuming an Ohmic spectral
density we approximate γR(�0na,1nb) by γR(ωJ)ωQ/ωJ, which
assumes that the qubit energy shifts due to both the cavity
and the JPM are sufficiently smaller than ωQ (i.e., �0na,1nb ≈
ωQ). Using γR(ωJ) = 200 MHz as in the main text and other
quantities as before, we obtain a JPM-limited qubit lifetime
T

γR
1 ≈ 2 μs for vacuum in the cavity. For cavity Fock states

with n > 0 this lifetime scales as

T
γR

1 ∝ 1

(
√

n − √
n + 1)2

= (
√

n + √
n + 1)2, (C13)

and so we have T
γR

1 ∝ 2n to leading order. Thus, for n = 10
we have an improvement of the qubit lifetime to T

γR
1 ≈ 40 μs.

In addition, there are several competing incoherent pro-
cesses in the JPM, namely bright and dark counts, which
block the JPM-mediated qubit decay channel. Numerical
simulations indicate that due to the fact that γJ � �1na,0nb

γR

for relevant photon numbers in the cavity, there is almost
no appreciable decay of the qubit during the measurement
process [see Fig. 7(a)]. This can be understood by the fact that
�1na,0nb

γR
/γJ ∝ g2

Q/(n�2), which for n = 10 is only 0.05%, and
so we expect no more than a 0.05% change in the qubit state
due to JPM-mediated decay during the measurement protocol.
Detailed study of qubit decay during JPM measurement will
be the subject of future work.
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