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Chapter 1

Superconducting Microwave

Resonators

Superconducting microwave resonators are critical elements in the design of any prac-

tical quantum circuit. These basic yet rich physical systems provide us with a testbed

for studying topics such as dielectric and interface losses [1–4], nonequilibrium quasi-

particles [5–7], two-level systems defects (TLS) [8, 9], and 1/f magnetic flux noise [10].

In addition, microwave resonators form the basis of dispersive measurement systems –

the most widely adopted and successful scheme for measuring the state of supercon-

ducting qubits. Finally, most of our intuition for superconducting qubits stems from

our understanding of microwave resonators1, and not the other way around. It is for

these reasons that I devote an entire chapter to the analysis of classical oscillators.

1Hereafter referred to as resonators, oscillators, or modes.
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May they continue to mystify generations of graduate students to come!

This chapter begins with a brief review of the most common coupling schemes

encountered when working with resonators. We show that for each of the coupling

schemes considered, the system can be mapped onto an equivalent driven RLC circuit.

From the differential equations governing the dynamics of these circuits, we derive

expressions for the steady-state photon occupation in the resonator as a function of

easily measured quantities. Lastly, we consider systems composed of coupled oscilla-

tors to show that both avoided level crossings and Purcell decay are purely classical

phenomena.

1.1 External Loading Effects

When you couple a resonator to external circuitry, you change both its resonance

frequency and quality factor, but by how much, and why? To understand these loading

effects, we consider the circuits depicted in Fig. 1.1. In each of these systems, there

is an ideal voltage source Vd(t) with an input impedance Z0 driving a resonator. In

the absence of external coupling (i.e. Cd = Md = 0), the resonator is characterized by

its capacitance Cr, inductance Lr, and internal resistance Ri. We define the internal

quality factor of the resonator by

Qi ≡ ω0RiCr, (1.1)
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where ω0 = 1/
√
LrCr is the bare resonance frequency [11]. In addition, we define the

impedance of the resonator by

ZLC ≡
√
Lr
Cr

= ω0Lr =
1

ω0Cr
, (1.2)

which is typically ∼ 50 Ω for standard coplanar waveguide (CPW) geometries [12,

13]. This value can increase substantially when the inductance per length is increased

through the use of high kinetic inductance materials or Josephson junctions, which can

improve or degrade the coupling quality factor as we will soon show.

The goal of this section is to describe methods for mapping the circuits shown

in Fig. 1.1(a)-(e) onto equivalent driven RLC circuits which are described by linear

second-order differential equations that can be solved algebraically. Armed with these

expressions, we will then solve for the steady state current and voltage in the oscillator

due to an applied resonant drive.

We begin with the circuit shown in Fig. 1.1(a). The most confusing part of this

system is related to the coupled two-port network depicted in Fig. 1.2(a). In particular,

how do we write down Kirchoff’s laws without an explicit connection between circuit

nodes? Using the definition of the impedance parameters, one can show that this

network is equivalent to the circuit shown in Fig. 1.2(b). In this equivalent circuit,

we have ‘eliminated’ the mutual inductance in favor of an explicit galvanic connection,

which is often easier to think about and analyze. Applying this transformation to the

circuit of interest (Fig. 1.1(a)), we arrive at the system shown in Fig. 1.2(c). Then,
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(a) (b)

(c) (d)

(e)

Figure 1.1: Common coupling schemes for microwave resonators. (a) An inductively
driven RLC circuit coupled in reflection. (b) A capactively driven RLC circuit coupled
in reflection. (c) An inductively driven RLC circuit coupled to a feedline. (d) A
capacitively driven RLC circuit coupled to a feedline. (e) A capacitively driven RLC
tank circuit coupled in transmission.
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by applying Kirchoff’s Voltage Law (KVL) we obtain the system of equations below:

I1 =
Vd
Z0

≡ Id (1.3)

(I1 − I2)Z0 = jωd(Ld −Md)I2 + jωdMd(I2 − I3) (1.4)

jωdMd(I2 − I3) = jωd(Lr −Md)I3 +Ri(I3 − I4) (1.5)

Ri(I3 − I4) =
1

jωdCr
× I4. (1.6)

Notice that we have replaced all derivatives (integrals) with jωd (1/jωd), which is valid

since we are interested in finding steady state solutions. Using Eq. (1.4), we solve for

I2 in terms of the drive current Id and the current through the inductor IL ≡ I3 which

yields the expression

I2 =
IdZ0 + jωdMdIL
jωdLd + Z0

'
(
Id +

jωMd

Z0

IL

)
×
(

1− jωdLd
Z0

)
. (1.7)

Similarly, using Eq. (1.6) we write I4 in terms of IL as2

I4 =
RiIL

Ri + 1
jωdCr

' IL

(
1− 1

jωdCrRi

− 1

(ωdCrRi)2

)
.

We can rewrite the above expression as

Ri(IL − I4) = IL

(
1

jωdCr
+
Z2

LC

Ri

)
. (1.8)

Substituting Eqs. (1.7) and (1.8) into Eq. (1.5) yields

2Note that a first-order expansion in 1/Ri would neglect internal loss mechanisms in later substi-
tutions.
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Id

(
jωdMd +

ω2
dMdLd
Z0

)
︸ ︷︷ ︸

drive term

= IL

(
jωdLr +

1

jωdCr
+
Z2

LC

Ri︸ ︷︷ ︸
uncoupled RLC Circuit

+
ω2
dM

2
d

Z0︸ ︷︷ ︸
external loss

− j
ω3
dM

2
dLd

Z2
0︸ ︷︷ ︸

frequency shift

)
.

Neglecting the second portion of the drive term along with the small frequency shift3,

we arrive at the expression

IL = Id
jωdMd

j(ωdLr − 1
ωdCr

) +RΣ

, (1.9)

where

RΣ = ω2
dM

2
d/Z0 + Z2

LC/Ri. (1.10)

We define the total quality factor of this circuit by

Qtot ≡ ωdLr/RΣ

=


ωdRiCr = Qi as Md → 0

( Lr

Md
)2( Z0

ZLC
) = Qc as Ri →∞.

(1.11)

Then, by setting ωd = ω0 in Eq. (1.9), the magnitude of the current through the

inductor is given by

|IL| =
ωdMd

RΣ

|Id| =
(
Md

Lr

)
×Qtot × |Id| . (1.12)

As a second example, consider the circuit shown in Fig. 1.1(b). Using the Thevenin-

3Assuming ωd/2π = 5 GHz, Md = 10 pH, Ld = 500 pH, and Lr = 1 nH, we obtain a frequency
shift ∆ω0/2π ' 0.1 MHz.
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+

-

+ -

-

+ + -
+

-

+

-

(a) (b)

(c)

Figure 1.2: Circuit transformations for dealing with mutual inductance. (a) A cou-
pled two-port network with self-inductances L1 and L2 coupled via mutual inductance
M . (b) An equivalent circuit to part (a), but with galvanically coupled nodes. (c)
The transformation from part (b) applied to the circuit depicted in Fig. 1.1(a). In
addition, the voltage drive was transformed to a Norton equivalent current source
Id(t) = Vd(t)/Z0.
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to-Norton conversion, we replace the voltage source Vd in series with Z0 and Cd by an

equivalent current source

Id ≡ Vd/Zbranch

shunted by the branch impedance

Zbranch* = Z0 + 1/jωCd.

Provided that Z0 � 1/(ωdCd), one finds that

Ybranch = 1/Zbranch =
jωCd

jωCdZ0 + 1
' jωCd +

1

(ωCd)2Z0︸ ︷︷ ︸
≡1/Rd

. (1.13)

This is (nearly) identical to the admittance of a capacitor Cd in parallel with a large

frequency dependent resistance [14]. From current conservation

Id =
VC

Zbranch

+
1

Lr

∫ t

−∞
VCdt+ jωdCrVC +

VC
Ri

' jωd(Cr + Cd)VC +
1

Lr

∫ t

−∞
VCdt+

VC
R||

, (1.14)

where

1/R|| = 1/Ri + (ωdCd)
2Z0. (1.15)

Noting that the current through the inductor IL is related to the voltage across the

capacitor VC by

VC = Lr
dIL
dt
,
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we can rewrite Eq. (1.14) in terms of IL. The result is that

ω′20 Id =

(
ω′20 − ω2

d +
jωd
R||CΣ

)
IL, (1.16)

where CΣ = Cr + Cd and ω′0 ≡ 1/
√
CΣLr

4. For a resonant drive (i.e. ωd = ω′0), the

current through the inductor is given by

|IL| = Qtot|Id| ' Qtotω
′
0Cd|Vd|, (1.17)

where

Qtot ≡ ω′0R||CΣ

=


ω0RiCr = Qi as Cd → 0

(CΣ

Cd
)2(

Z′
LC

Z0
) = Qc as Ri →∞.

(1.18)

In the above equation, Z ′LC =
√
Lr/CΣ. Relating Eq. (1.17) to the voltage across the

capacitor, one has that

|VC | = ω′0Lr|IL| =
(
Cd
CΣ

)
×Qtot × |Vd| . (1.19)

Note the symmetry between Eqs. (1.12) and (1.19). We will use these expressions in

the following section.

4The frequency shift due to a capacitive coupling cannot be ignored. Assuming ωd/2π = 5 GHz,
Cd = 10 pF, Cr = 1 pF, we find a frequency shift ∆ω0/2π ' 25 MHz.
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1.2 Photon Occupation Estimates

The single photon power regime is important for characterizing the internal quality

factor of a resonator at millikelvin temperatures [1, 15]. The reason is that the internal

resistance Ri is never actually designed to be there – it is an effective resistance that

models all other loss mechanisms in our distributed system (e.g. dielectric losses,

quasiparticles, vortices, etc) – and varies strongly with applied drive power. So, if we

plan on using the internal quality factors extracted from resonator measurements as

a predictor of qubit performance, then we must do so at the single photon level. In

addition, a typical dispersive measurement system operates with a few tens of photons

in the resonator during a qubit measurement. However, when we are not measuring

the qubit, we would like to shield the resonator from room-temperature electronic noise

as much as possible. This is primarily accomplished using distributed attenuation, but

how do we choose the right amount?

The following treatment is based on a semiclassical argument, and ignores many

subtle effects (e.g., photon statistics, impedance mismatches, etc). Starting with the

inductive case [see Fig. 1.1(a)], we can equate the energy stored in the inductor to the
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number of photons in the resonator nr multiplied by the photon energy as given below:

~ω0nr =
1

2
Lr|IL|2 =

1

2
× ZLC

Z0

(
Md

Lr

)2

︸ ︷︷ ︸
=1/Qc

× Q2
tot × |Id|2Z0︸ ︷︷ ︸

=Pa

/ω0

=
1

2

Q2
tot

Qc

× Pa

ω0

.

Rearranging this expression, one has that

nr =
1

2

Q2
tot

Qc

× Pa

~ω2
0

. (1.20)

Performing a similar calculation for the capacitive case [see Fig. 1.1(b)], one finds

that

~ω′0nr =
1

2
CΣ|VC |2 =

1

2
× Z0

Z ′LC

(
Cd
CΣ

)2

︸ ︷︷ ︸
=1/Qc

× Q2
tot × |Vd|2/Z0︸ ︷︷ ︸

=Pa

/ω′0

=
1

2

Q2
tot

Qc

× Pa

ω′0
.

This yields a nearly identical expression to Eq. (1.20), except for differences in the

definitions of Qtot and Qc [compare Eqs. (1.11) and (1.18)]. In fact, the biggest

difference overall stems from how Qc scales with ZLC/Z0, which can be reasoned as

follows. In the inductive case, it is the voltage drop induced by the resonator across

the external bias circuitry that generates loss, and therefore the dissipated power Pdiss =

〈V 2〉/Z0 = (ω0M |IL|)2/2Z0. Since the maximum energy stored in the inductor is given
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by Emax = Lr|IL|2/2, from the definition of the quality factor, we have that

Qc = ω0Emax/Pdiss =

(
Z0

ZLC

)(
Lr
Md

)2

∝ Z0. (1.21)

In the capacitive case, it is the current flowing through Z0 that generates loss, which

is determined by Cd alone, and is given by I = VC/Zbranch ' ω′0Cd|VC |. This means

that the power dissipated in the resistor Pdiss = 〈I2〉Z0 = (ω′0Cd|VC |)2Z0/2. Since the

maximum energy stored in the capacitor is given by Emax = CΣ|VC |2/2, we have that

Qc = ω′0Emax/Pdiss =

(
Z ′LC

Z0

)(
CΣ

Cd

)2

∝ 1

Z0

. (1.22)

Eqs. (1.21) and (1.22) are critical design formulas for qubits and resonators.

1.3 Why κ is not a Frequency

The energy decay rate of a resonator, typically denoted by κ, is an important de-

sign parameter for dispersive measurement systems, as it influences both measurement

speed and qubit coherence times. However, you will often see this quantity reported

in terms of a frequency, angular frequency, or even an inverse timescale – so which one

is correct? To understand where the ambiguity about κ comes from, we recall that a

common definition of the quality factor is

Q ≡ ω0

∆ω
, (1.23)

where ω0 is the angular resonance frequency and ∆ω is the full width at half maximum

(FWHM), if measured in units of energy [Fig. 1.3(a)]. Typically, when we talk about
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κ, we are directly referring to ∆ω (i.e. κ = ∆ω). Therefore, if we want to report κ in

terms of frequency measured in the laboratory, then we must remember to divide by a

factor 2π [Fig. 1.3(b)]. But this is still very confusing, because κ has little to do with

oscillations, and is best described as an inverse timescale for the exponential decay of

energy. In other words, a value of κ = 1/(100 ns) leads to a 1/e loss of energy stored

in the resonator during free decay in 100 ns [Fig. 1.3(c)]. At any rate, we often quote

the bandwidth of a resonator in terms of κ, so watch out for factors of 2π.

1.4 The Classical Meaning of g

Coupled harmonic oscillators exhibit many of the same behaviors that qubit-resonator

and qubit-qubit systems do, but can be analyzed using simple algebraic techniques. In

what follows, we will derive expressions for the coupling strength g between capacitively

(and inductively) coupled LC circuits. Consider the circuit shown in Fig. 1.4(a) with

bare resonance frequencies ω1 = 1/
√
L1C1 and ω2 = 1/

√
L2C2. The equations of

motion for this system are

jω(C1 + Cg)V1 +
V1

jωL1

− jωCgV2 = 0 (1.24)

jω(C2 + Cg)V2 +
V2

jωL2

− jωCgV1 = 0. (1.25)
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0.5

1.0

0.5

1.0

(a) (b)

0 1 2 3

1
(c)

Figure 1.3: The multiple meanings of κ. (a) The steady state energy stored in the
resonator as function of the angular drive frequency ωd. The FWHM ∆ω is defined
as the angular bandwidth over which the stored energy is greater than half the value
on resonance. Under this definition ∆ω = κ. (b) The energy response of a resonator
measured with the scattering parameter S21 in the laboratory versus drive frequency
fd. When measured in units of Hertz, the FWHM is given by κ/2π. This is particulary
critical for comparisons of κ with the dispersive shift, where factors ∼ 2π will lead to
a grossly inefficient readout systems. (c) Free decay of energy stored in the resonator.
The exponential decay of V 2 occurs with a characteristic timescale of 1/κ. The same
holds during resonator ring-up – the transients decay with characteristic timescale of
1/κ.
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Introducing the notation βi = Cg/(Ci + Cg) (where βi � 1) and identifying the new

resonance frequencies ω′i = 1/
√
Li(Ci + Cg), the equations of motion can be written in

matrix form as [
ω′21 − ω2 ω2β1

ω2β2 ω′22 − ω2

] [
V1

V2

]
=

[
0
0

]
. (1.26)

Setting the determinant of this 2 x 2 matrix to zero yields the eigenfrequencies

ω± =

√
(ω′21 + ω′22 )±

√
(ω′21 − ω′22 )2 + 4ω′21 ω

′2
2 β1β2

2(1− β1β2)
, (1.27)

which is a bit too complicated to remember. However, if we set ω′1 = ω′2 = ω0 we find

that

ω± ' ω0

√
1±

√
β1β2 ' ω0 ±

ω0

2

Cc√
(C1 + Cg)(C2 + Cg)︸ ︷︷ ︸

=g

. (1.28)

We will arrive a very similar expression for the coupling strength between a qubit

and resonator in our study of dispersive measurement systems. A plot of the eigenfre-

quencies from Eq. (1.27) is shown in Fig. 1.5(a) using the parameters listed in Table

1.1. We note that avoided level crossings correspond to the resonant energy transfer

between modes #1 and #2 in the time domain with a beat period of π/g.

Table 1.1: Avoided Level Crossing Parameters

Variable Value

ω1/2π 5 GHz
ω2/2π ∈ (4.0, 6.0) × GHz
β1 0.05
β2 0.05
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(a)

(b)

(c)

Figure 1.4: Common coupling schemes for oscillators. (a) Capacitively coupled LC cir-
cuits, coupled via series capacitance Cg with node voltages V1 and V2. (b) Inductively
coupled LC circuits, coupled via mutual inductance Mg with loop currents I1 and I2.
(c) As in part (a), but with an internal shunt resistance R2 added to mode #2.
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(a)

(b)

Figure 1.5: Avoided level crossings for coupled LC circuits. (a) Eigenfrequencies for
capacitively coupled LC circuits [Eq. (1.27)] plotted versus the detuning ∆ = ω1 −
ω2. All axes in are normalized by the bare resonance frequency ω1 = 1/

√
L1C1. At

large detunings, both modes decouple and tend to the shifted resonance frequencies ω′1
and ω′2. (b) Eigenfrequencies for inductively coupled LC circuits [Eq. (1.32)] versus
detuning. At large detunings, both modes decouple, but tend to the bare resonance
frequences ω1 and ω2. At intermediate detunings, the modes repel by approximately
g2/∆.



18

The analogous system with a mutual inductive coupling is given in Fig. 1.4(b).

Making use of the transformation described in Fig. 1.2 (a)-(b), we arrive at the equa-

tions of motion

I1

jωC1

+ jωL1I1 − jωMgI2 = 0 (1.29)

I2

jωC2

+ jωL2I2 − jωMgI1 = 0. (1.30)

Multiplying Eq. (1.29) by jω/L1 [and Eq. (1.29) by jω/L2], we find that

[
ω2 − ω2

1 −ω2β1

−ω2β2 ω2 − ω2
2

] [
I1

I2

]
=

[
0
0

]
, (1.31)

where βi = Mg/Li and ωi = 1/
√
LiCi. Setting the determinant of this 2 x 2 matrix

to zero yields the eigenfrequencies

ω± =

√
(ω2

1 + ω2
2)±

√
(ω2

1 − ω2
2)2 + 4ω2

1ω
2
2β1β2

2(1− β1β2)
, (1.32)

which is again too cumbersome to be useful. However, by setting ω1 = ω2 = ω0 and

neglecting terms O(β2), one has that

ω± ' ω0 ±
ω0

2

Mg√
L1L2︸ ︷︷ ︸

=g

. (1.33)

A plot of the eigenfrequencies from Eq. (1.32) are shown in Fig. 1.5(b) using the

parameters reported in Table 1.1.
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1.5 The ‘Purcell Effect’ for LC Circuits

Our estimates of loaded quality factors discussed in Section 1.1 can be summarized in

a useful and compact form as

T1,r =
CΣ

Re{Y (ω0)}
, (1.34)

where CΣ is the total capacitance of resonator, T1,r = Qtot/ω0 is the resonator’s

energy relaxation time, and Y (ω0) is the admittance of the resonator evaluated its

resonance frequency [16]. While this formula may not be screaming to you at the

moment, it is extremely helpful when the load resistor Z0 (see Fig 1.1) is replaced

by something more complicated (e.g. a resonant circuit, filter, qubit, etc). In what

follows, we will use this formula to derive the ‘Purcell effect’ for the system of coupled

oscillators depicted in Fig. 1.4(c). Here, we have a lossless oscillator (denoted with

subscript 1) coupled to an oscillator with damping (denoted with subscript 2). We

would like to understand how the decay rate of the ‘lossless’ oscillator depends on

the coupling strength, detuning, and decay rate of the damped mode. We assume

that C1, C2 � Cg and ZLC,2 =
√
L2/C2 � R2, as these are the limits relevant to a

dispersive measurement system.

Starting with the admittance of the undamped resonator to ground, one finds that

Y (ω′1) =
1

1
jω′

1Cg
+ 1

1/R2+2jC2ω̄∆/ω′
1

, (1.35)

where ∆ = ω′1−ω2 and ω̄ = (ω′1 +ω2)/2. Since we are only interested in the real part
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of Y (ω′1), it pays to rearrange this expression as below:

Y (ω′1) =
jω′1Cg × (1/R2 + 2jC2ω̄∆/ω′1)

1/R2 + j(ω′1Cg + 2C2ω̄∆/ω′1)

=
jω′1Cg × (1/R2 + 2jC2ω̄∆/ω′1)

1/R2 + j(ω′1Cg + 2C2ω̄∆/ω′1)
× 1/R2 − j(ω′1Cg + 2C2ω̄∆/ω′1)

1/R2 − j(ω′1Cg + 2C2ω̄∆/ω′1)

'
ω′21 C

2
g/R2

4C2
2 ω̄

2∆2/ω′21
+ imaginary terms. (1.36)

Plugging Eq. (1.36) into Eq. (1.34) yields the result

T1,r '
(

∆2

g2

)(
1

κ2

)
×
(
ω2ω̄

2

ω′31

)
, (1.37)

where

g =
√
ω′1ω2

Cg

2
√
CΣC2

and

κ2 = 1/R2C2.

Eq. (1.37) closely resembles the celebrated Purcell formula for qubits: T1,q ≤ (∆/g)2/κ

[17]. In Fig. 1.6, we analyze the accuracy of this approximation for the parameters

listed in Table 1.2. Interestingly, we find that Purcell decay is significantly worse

at positive detunings using a single mode approximation for the resonator5. This is

primarily due to the frequency dependent impedance of the coupling capacitor Cg,

which regulates the flow of current from the lossless mode into the damped mode’s

5Typically, our resonators are constructed using coplanar waveguides which support higher har-
monics, leading to additional Purcell decay as discussed by Houck et al. [17].
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resistor.

Table 1.2: Purcell Decay Parameters

Variable Value

ω′1/2π ∈ (3.5, 6.5) × GHz
ω′2/2π 5.0 GHz
Cg 10 fF

C1 + Cg 100 fF
C2 + Cg 1 pF
R2 100 kΩ
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(a)

(b)

Figure 1.6: Classical Purcell decay. (a) A comparison of the exact [Eq. (1.34)] and
approximate [Eq. (1.37)] expressions for the Purcell relaxation time plotted versus
the detuning ∆′ = ω′1 − ω′2. The parameters used in these plots are listed in Table
1.2, and are representative of a typical dispersive measurement system. We find that
the accuracy of our approximation is within 10% of the exact expression for detunings
|∆| > 0.5 GHz.
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Chapter 2

Superconducting Quantum Circuits

This chapter is a review of the basic device physics needed to understand superconduct-

ing transmon qubits, Josephson Photomultipliers (JPM), and dispersive measurement

systems. It begins with a study of the simple LC oscillator to demonstrate meth-

ods for quantizing superconducting electrical circuits in a familiar system. We then

introduce Josephson junctions into our circuits to derive Hamiltonians for the trans-

mon and JPM. Finally, we analyze coupled transmon-resonator systems to derive the

Jaynes-Cummings Hamiltonian in the dispersive approximation.
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2.1 LC Circuit

Using the definition of branch flux introduced in Appendix A.1, the current conserva-

tion equation for the circuit depicted in Fig. 2.1(a) can be written as

0 = CrΦ̈︸︷︷︸
current into Cr

+ Φ/Lr︸ ︷︷ ︸
current into Lr

, (2.1)

where Φ =
∫ t
−∞ V (t′)dt′. Identifying Φ with ‘position’ and Φ̇ with ‘velocity’, the

Lagrangian that reproduces Eq. (2.1) is

L(Φ, Φ̇) =
CrΦ̇

2

2︸ ︷︷ ︸
kinetic

− Φ2

2Lr︸︷︷︸
potential

, (2.2)

by assuming the Euler-Lagrange equation

d

dt

∂L
∂Φ̇

=
∂L
∂Φ

. (2.3)

The ‘momentum’ conjugate to Φ is defined as

∂L
∂Φ̇

= CrΦ̇ = CrV.

Notice that CrV is simply the chargeQ stored on the capacitor plate, and therefore that

Φ and Q are the conjugate variables for this system, with Q serving as the ‘momentum’.

From the definition of the Hamiltonian, one finds that

H(Φ, Q) = QΦ̇− L =
Q2

2Cr
+

Φ2

2Lr
, (2.4)

which is the sum of the capacitive and inductive energies (i.e. the total energy of the

system).

To quantize this circuit, we promote Φ and Q to operators and impose the canonical
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commutation relation

[Φ̂, Q̂] = i~. (2.5)

Under these substitutions, the Hamiltonian becomes an operator of the form

Ĥ =
Q̂2

2Cr
+

Φ̂2

2Lr
, (2.6)

which can be written in terms of raising and lowering operators as

Ĥ = ~ω0(â†â+ 1/2), (2.7)

where ω0 = 1/
√
LrCr is the resonance frequency with â and â† defined implicitly

below1:

Φ̂ = Φzpf(â+ â†) (2.8)

Q̂ = iQzpf(â
† − â) (2.9)

Φzpf =

√
~ω0Lr

2
=

√
~ZLC

2
(2.10)

Qzpf =

√
~ω0Cr

2
=

√
~

2ZLC

. (2.11)

Here, Φzpf and Qzpf are the zero point fluctuations of flux and charge, respectively 2.

1To derive these expressions for yourself, assume that â = c1Φ̂ + ic2Q̂ and â† = c1Φ̂− ic2Q̂ where
c1, c2 are real. By imposing Eq. (2.5), one arrives at Eqs. (2.8)-(2.11). One can easily verify that
[â, â†] = 1.

2To remember the expression for Φzpf, simply equate the inductive energy term Φ2/2Lr with one-
half of the zero-point energy of the oscillator (i.e., ~ω0/4) and solve for Φ. The analogous procedure
holds for deriving Qzpf.
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The energy level structure for this system is

〈n|Ĥ|n〉 = En = ~ω0(n+ 1/2), (2.12)

where |n〉 is the Fock state corresponding to n excitations3 in the resonator. A flux

basis representation of the wavefunctions for this system is shown Fig. 2.1(c) using the

parameters from rows 1-2 of Table 2.1.

Table 2.1: Comparing LC circuits with transmons

Variable Value

Cr 64.5 fF
Lr 8.2 nH
Cxy 0
EC/h 300 MHz
EJ/h 20 GHz

Cq = e2/(2EC) 64.5 fF
Lq = (Φ0

2π
)2/(EJ) 8.2 nH

2.1.1 Driven LC Circuit

Using similar methods to Section 2.1, the Hamiltonian for the driven LC circuit de-

picted in Fig. 2.1(b) can be written as

Ĥ =
Q̂2

2CΣ

+
Φ̂2

2Lr
+
Cd
CΣ

Q̂Vd(t), (2.13)

where CΣ ≡ Cd +Cr (see Appendix A.2 for further detail). This is nearly identical to

the Hamiltonian from Eq. (2.6), but with a shifted resonance frequency ω′0 = 1/
√
LrCΣ

3We often refer to these excitations as microwave photons since ω0/2π lies in the microwave fre-
quency range.
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(a) (b)

(c)

Figure 2.1: The quantum LC circuit. (a) An isolated LC circuit with capacitance
Cr and inductance Lr. (b) As in part (a), but with a drive source Vd(t) coupled to
the oscillator via the capacitance Cd. (c) A flux basis representation of the wavefunc-
tion probabilities for an LC with the parameters listed in Table 2.1. We plot these
wavefunctions versus the ‘dimensionless flux’ δ = 2πΦ/Φ0 for a comparison with the
transmon’s wavefunctions in Section 2.3.
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plus a drive term

Ĥd(t) =
Cd
CΣ

Q̂Vd(t). (2.14)

Treating the drive term as a small perturbation, we see from Eq. (2.9) that Ĥd(t) ∝ Q̂

couples the states |n〉 and |n− 1〉, and is therefore capable of creating (and removing)

excitations in the resonator, as expected for a drive source. Interestingly, a resonant

drive of the form Vd(t) = |Vd| cos(ω′0t) produces a coherent state

|αr〉 = exp(−|αr|2/2)
∞∑
n=0

αnr√
n!
|n〉

inside the resonator [18, 19], with an average number of photons

n̄r = |αr|2.

We note that, in practice, it is quite challenging to prepare even small superpositions

of Fock states, and we refer the interested reader to the beautiful set of experiments

performed by Hofheinz et al. [20, 21] for further information about this topic.

2.2 Josephson Junctions

The Josephson relations state that the supercurrent I flowing through a junction and

the voltage difference V across the junction are governed by the equations [22–24]

I = I0 sin δ (2.15)

V =
Φ0

2π

dδ

dt
, (2.16)
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where I0 is the junction’s critical current, δ is the superconducting phase difference

across the junction, Φ0 ≡ h/2e is the magnetic flux quantum. Taking the time deriva-

tive of Eq. (2.15) yields the expression

dI

dt
= I0 cos δ × dδ

dt
,

which, by Eq. (2.16), implies that

V =
Φ0

2πI0 cos δ
× dI

dt
.

This is quite similar to the formula for the voltage drop across an inductor if we define

the Josephson inductance as

LJ(δ) =
Φ0

2πI0 cos δ
. (2.17)

However, notice here that LJ(δ) is a function of the current through the junction by Eq.

(2.15). This is why Josephson junctions are often referred to as nonlinear inductors.
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We can evaluate the energy absorbed by this element using the Eq. (A.5), which yields4

U(δ) =

∫ t

−∞
I(t′)V (t′)dt′

=
Φ0

2π

∫ t

−∞
I0 sin δ′ × dδ′

dt′
dt′

=
Φ0

2π

∫ δ

0

I0 sin δ′dδ′

= −EJ(cos δ − 1), (2.18)

where

EJ =
I0Φ0

2π
(2.19)

is the Josephson energy. Typically, the constant term in Eq. (2.18) is omitted since

only differences in potential energy are meaningful. Finally, we note that, by Eq.

(2.16), the branch flux [see Eq. (A.1)] across a junction is given by

Φ(t) =

∫ t

−∞
V (t′)dt′ =

Φ0

2π
δ(t). (2.20)

4We assume that at t = −∞, there are no currents or voltages in the circuit, therefore δ = 0
[25, 26].
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2.3 Transmon

From the analysis of Josephson junctions presented in Section 2.2, the Hamiltonian for

the transmon circuit shown in Fig. 2.2(a) is given by [27]

Ĥ =
Q̂2

2CΣ

− EJ cos(2πΦ̂/Φ0) +
Cxy

CΣ

Q̂Vd(t), (2.21)

where CΣ = Cq +Cxy and EJ = I0qΦ0/2π (see Appendix A.3 for further detail). Note

that when Φ/Φ0 � 1, this Hamiltonian is identical to Eq. (2.13) after the following

substitutions are made: Cr → Cq, Cd → Cxy, and Lr = Φ0/(2πI0q) = LJ(δ = 0). Using

this same line of reasoning (with Vd(t) = 0), we can estimate the transition frequencies

of transmon by treating the quartic term of the cosine potential as a small perturbation

Ĥ ′ = −EJ
12

(
2π

Φ0

)4

Φ̂4 = −EC
12

(â+ â†)4

added to the harmonic oscillator Hamiltonian. This calculation yields

~ω10 = E1 − E0 = ~ω0 − EC

~ω21 = E2 − E1 = ~ω0 − 2EC

~ω32 = E3 − E2 = ~ω0 − 3EC

...

where

ω0 =
√

8EJEC/~ (2.22)
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is the plasma frequency5 and

EC = e2/2CΣ (2.23)

is the charging energy (with e = +1.602×10−19 C). The validity of this approximation

breaks down for higher excited states where additional terms in the cosine expansion

are needed to faithfully represent the potential energy landscape. At any rate, in the

transmon limit (i.e. EJ/EC � 1) this is an excellent approximation for the first few

energy levels, allowing us to estimate the nonlinearity of the system using the closed

form expression

η = ω21 − ω10 ' −EC/~ , (2.24)

rather than relying on complicated solutions based on the Mathieu functions [27]. In

a typical experiment ω10/2π ' 5 GHz and η/2π ' −250 MHz leading to a relative

nonlinearity ' 5%. We note that while the weak nonlinearity of the transmon is a

disadvantage from the standpoint of gate speed, it is important to maintain a high

EJ/EC ratio in order to limit the transmon’s sensitivity to charge noise which scales

as exp(−
√

8EJ/EC) [27, 28]. Though this condition could be satisfied by choosing a

higher EJ to compensate for an increase in EC , it would increase the frequency of the

transmon and require a larger area (or higher critical current density) Josephson junc-

tion, all of which cause problems of their own [29–32]. A phase basis representation of

the transmon’s wavefunctions are shown in Fig. 2.2(c) using the parameters from rows

5The frequency obtained by using the second order coefficient in an expansion of the potential
about a local minimum.
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3-7 of Table 2.1. Note the high degree of similarity between the transmon and har-

monic oscillator [see Fig. 2.1(c)], as expected for a system with a relative nonlinearity

of ∼ 5%.

From the methods discussed in Appendix A.4, we can approximate the Hamiltonian

in Eq. (2.21) as

Ĥ = −~ωq
2
σ̂z +

(
Cxy

CΣ

Vd(t)Qzpf

)
σ̂y, (2.25)

where

ωq ' (
√

8EJEC − EC)/~ (2.26)

is the angular qubit frequency and σ̂z, σ̂y are the usual Pauli matrices acting on the

lowest two energy levels of the system. For a drive of the form

Vd(t) = |Vd| ×
(
Y (t) cos(ωqt)−X(t) sin(ωqt)

)
, (2.27)

where |Vd| is the amplitude, ωq is the drive frequency (resonant with the qubit), and

X(t) and Y (t) are window functions, the Hamiltonian in the interaction picture is (see

Appendix A.5 for further detail)

ĤI(t)/~ = ΩR ×
(
Y (t)

σ̂y
2

+X(t)
σ̂x
2

)
, (2.28)

where

ΩR = Qzpf|Vd|
Cxy

CΣ

/~ (2.29)

is the angular Rabi frequency. Time evolution in the interaction picture obeys the

equation
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(a) (b)

(c)
Harmonic 
potential

Figure 2.2: The transmon qubit. (a) A fixed frequency transmon with self-capacitance
Cq and junction critical current I0q coupled to a drive source Vd(t) via the capacitance
Cxy. (b) A frequency tunable transmon with the JJ from part (a) replaced by a dc
SQUID with external flux Φext threading the loop. (c) Wavefunctions for the fixed
frequency transmon using the parameters listed in rows 3-7 of Table 2.1. The overlaid
Harmonic potential energy landscape Uh = EJδ

2/2 is identical to potential in Fig.
2.1(c), allowing for a comparison between the transmon and harmonic oscillator.
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|ψ(t)〉I = ÛI(t)|ψ(0)〉I ,

where

ÛI(t) = T
{

exp

(
− i

~

∫ t

0

ĤI(t
′)dt′

)}
,

is the Dyson series (with time-ordering operator T ) and |ψ(0)〉I is the initial state

vector in the interaction frame. If HI(t
′) commutes with itself for all times t′, we can

forgo the details of time-ordering, leading to the familiar propagator equation

ÛI(t) = exp

(
− i

~

∫ t

0

ĤI(t
′)dt′

)
.

Assuming Hd(t) = ~ΩRσ̂x/2, the propagator is given by

ÛI(t) = exp

(
− iΩRt

2
σ̂x

)
.

This corresponds to a rotation of the state vector |ψ(0)〉I about the x-axis of the Bloch

sphere at an angular frequency ΩR. Adding back in the window function X(t) to drive

term, one finds that

ÛI(t) = exp

(
− iΩR

2
σ̂x

∫ t

0

X(t′)dt′
)
. (2.30)

This means that we can control the rotation angle of the state vector by simply varying
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the integral
∫ t

0
X(t′)dt′. Similarly, leading to the propagator

ÛI(t) = exp

(
− iΩR

2
σ̂y

∫ t

0

Y (t′)dt′
)
. (2.31)

2.3.1 Frequency Tunable Transmon

Consider the circuit depicted in Fig. 2.2(c). The potential energy for the dc SQUID

loop in Fig. 2.2(c) can be written as [27]

U(δ̂; Φext) = −EJ(Φext) cos(δ̂ − φ), (2.32)

where EJ(Φext) is the effective Josephson energy, Φext is the external flux threading the

dc SQUID loop, δ̂ = (δ̂1 + δ̂2)/2 is the effective phase difference across the junction6,

and φ is an offset phase determined by the equation

tanφ = d tan
(
πΦext/Φ0

)
, (2.33)

where d = (I2 − I1)/(I1 + I2) is the junction asymmetry parameter. The effective

Josephson energy

EJ(Φext) = EΣ cos

(
πΦext

Φ0

)√
1 +

(
d tan

(
πΦext/Φ0

))2
, (2.34)

where EΣ = Φ0(I1+I2)/2π. In this situation, the effective phase difference δ = 2πΦ/Φ0

in the canonical commutation relation [Φ̂, Q̂] = i~. This leads to a frequency tunable

6As it turns out, a treatment of time
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transmon, with a qubit frequency given by

ωq(Φext) = (
√

8EJ(Φext)EC − EC)/~, (2.35)

which tunes from the maximum frequency ωq,max ' (
√

8EJ,ΣEC − EC)/~ down to

ωq,min ' ωq,max ×
√
d. This frequency tunability is an important feature for imple-

menting fast, high-fidelity controlled-phase (CZ) gates with transmons [33–35] and

for avoiding unwanted interactions with TLS defects in the qubit’s energy spectrum

[29, 32, 36]. However, this also opens up channels for enhanced dephasing and relax-

ation.

2.4 Josephson Photomultiplier

Consider the JPM circuit depicted in depicted in Fig. 2.3(a). By current conservation,

we have that

CjΦ̈ + I0j sin(2πΦ/Φ0) + (Φ− Φext)/Lj = 0,

where Cj is the shunt capacitance, I0j is the junction critical current, and Lj is the

geometric inductance of the rf SQUID loop. The corresponding circuit Lagrangian

L =
1

2
CjΦ̇

2 + EJ(cos(2πΦ/Φ0)− 1)− (Φ− Φext)
2

2Lj
,

where EJ = I0jΦ0/2π is the Josephson energy. Identifying the canonical momentum

Q = CjΦ̇, the Hamiltonian can be written as

Ĥ =
Q̂2

2Cj
− EJ cos(2πΦ̂/Φ0) +

(Φ̂− Φext)
2

2Lj
. (2.36)
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Identifying the potential energy term

U(δ) = −EJ cos(δ) +

(
Φ0

2π

)2
(δ − 2πΦext/Φ0)2

2Lj
,

with δ = 2πΦ/Φ0, we can solve for the extrema7 of this potential by setting dU/dδ = 0.

This yields the condition

sin δ =
1

βL
(2πΦext/Φ0 − δ) (2.37)

where

βL =
2πI0jLj

Φ0

(2.38)

is the hysteresis parameter [22]. Physically, Eq. (2.37) is a straightforward statement

of current conservation in the SQUID loop; solutions can be depicted graphically as

shown in Fig. 2.3(b). Notice that −1/βL determines the slope of the line intersecting

the sinusoid from Eq. (2.37), and that the y-intercept of the line is ∝ Φext.

The curvature at the local minima of the potential determines the plasma frequency:

ωp =
2π

Φ0

[
1

Cj

∂2U

∂δ2

]1/2

.

This formula recovers the familiar harmonic oscillator expression 1/
√
LCj, where L

is the parallel combination of the Josephson inductance (evaluated at the minimum

of interest) and Lj (the geometric inductance). We can estimate the number of levels

in a well by n ' ∆U/~ωp, where ∆U is the potential energy barrier height. Under

normal operation, the JPM (phase qubit) potential is well-approximated by a quadratic

7From elementary calculus, d2U/dδ2 > 0 indicates a potential minimum, d2U/dδ2 < 0 indicates a
potential maximum.
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(a) (b)

(c)

Figure 2.3: The flux-biased phase qubit. (a) A flux-biased phase qubit with shunt
capacitance Cj, critical current I0j, and geometric inductance Lj. The circuit is flux-
biased using external circuitry which is mutually coupled to Lj, and generates an
external flux Φext through the loop. (b) Graphical solution of Eq. (2.37). The slope
of the line, −1/βL, determines the number of extrema (shown as circles) for a fixed
Φext. The potential minima (maxima) are indicated with solid (hollow) circles for a
comparison with part (c). External flux Φext controls the y-intercept, allowing us to
move between a single- and double-well regime as needed for JPM reset and photode-
tection. (c) Potential energy landscape of the JPM at a strongly nonlinear operating
point. The zoom-in shows the bound states of the left well, with tunneling tunneling
rates Γ0 � Γ1 � Γ2 � Γ3.
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term plus a cubic perturbation that introduces nonlinearity into the system [see Fig.

2.3(c)]. Clearly, as ∆U decreases, the nonlinearity of the well increases, and at a

certain point, the well can no longer admit even a single bound state. Right before this

happens, these circuits exhibit some interesting quantum mechanical behavior whereby

the excited states tunnel out of the shallow minimum where they were localized into

the deeper neighboring minima (see Appendices B.1 and B.7 for further detail).

2.5 Dispersive Measurement Systems

Consider the capacitively coupled transmon-resonator system depicted in Fig. 2.4.

Treating the transmon from this circuit as an ideal two-level system, the Hamiltonian

(in the rotating wave approximation) can be written as

H = ωrâ
†â− ωq

2
σ̂z + g(â†σ̂− + âσ̂+), (2.39)

where ωr ' 1/
√
Lr(Cr + Cg) is the resonator frequency, ωq ' (

√
8EJEC−EC)/~ is the

qubit frequency, EJ ' I0qΦ0/2π is the qubit’s Josephson energy, EC ' e2/2(Cq + Cq)

is the qubit’s charging energy, and

g '
√
ωrωq

2

Cg√
(Cr + Cg)(Cq + Cg)

(2.40)

is the transmon-resonator coupling strength (see Appendix A.6 for further detail).

This Hamiltonian can be transformed using the Schrieffer–Wolff transformation into
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the effective Hamiltonian (see Appendix A.6.2)

H̃/~ = ωrâ
†â− ωq

2
σ̂z −

σ̂z
2

(2χn̂+ χ) (2.41)

= ωrâ
†â− σ̂z

2

(
ωq + 2χ(n̂+

1

2
)

)
︸ ︷︷ ︸
ac Stark shift + Lamb Shift

= (ωr − χσ̂z)â†â︸ ︷︷ ︸
dispersive resonator shift

− σ̂z
2

(ωq + χ)︸ ︷︷ ︸
qubit + Lamb shift

,

where

χ =
g2

∆
(2.42)

with ∆ = ωq − ωr. Eq. (2.41) is the Jaynes-Cummings Hamiltonian in the dispersive

approximation (i.e., g � ∆). We find that the coupling term from Eq. (A.57) gives rise

to small energy level shifts that depend on the resonator and qubit states. Interpreting

the−χσ̂zââ term as a qubit state-dependent frequency shift of the resonator, one arrives

at a basic understanding of how dispersive measurement systems work. Alternatively,

this term can be viewed as a resonator state-dependent frequency shift of the qubit

(i.e., the ac Stark shift).

In reality, the transmon is not an ideal two-level system and the presence of the

|2〉 leads to a significant reduction in the effective dispersive shift χ, which can be

accounted for using the following substitution:

2χ→ 2g2

∆
× η

∆ + η
, (2.43)
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Figure 2.4: A capacitively coupled transmon-resonator system.

where η = ω10 − ω21, ∆ = ωq − ωr, and ωr,|0〉 − ωr,|1〉 = 2χ. Noting that |η| � |∆|,

the effective dispersive shift χ → (g2/∆) · η/∆, and therefore our original estimate of

the dispersive shift is reduced by η/∆ ∼ 0.1. For details on how to calculate these

corrections, see Refs. [27, 37, 38]. Notably, Ref. [38] showed that there is an additional

correction to Eq. (2.43) given by ωr/ωq.
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Chapter 3

JPM Experiment I

Fast, high-fidelity measurement is a key ingredient for quantum error correction1. Con-

ventional approaches to the measurement of superconducting qubits, involving linear

amplification of a microwave probe tone followed by heterodyne detection at room

temperature, do not scale well to large system sizes. We introduce an approach to

measurement based on a microwave photon counter demonstrating raw single-shot

measurement fidelity of 92%. Moreover, the intrinsic damping of the photon counter

is used to extract the energy released by the measurement process, allowing repeated

high-fidelity quantum non-demolition measurements. Our scheme provides access to

the classical outcome of projective quantum measurement at the millikelvin stage and

could form the basis for a scalable quantum-to-classical interface.

1This chapter is a reformated version of Ref. [39]
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3.1 Introduction

In order to harness the tremendous potential of quantum computers, it is necessary

to implement robust error correction to combat decoherence of the fragile quantum

states. Error correction relies on high-fidelity, repeated measurements of an apprecia-

ble fraction of the quantum array throughout the run time of the algorithm [40]. In the

context of superconducting qubits, measurement is performed by heterodyne detection

of a weak microwave probe tone transmitted across or reflected from a linear cavity

that is dispersively coupled to the qubit [41–47]. This approach relies on bulky, mag-

netic nonreciprocal circuit components to isolate the qubit from noisy amplification

stages [44, 48–50]; moreover, the measurement result is only accessible following room

temperature heterodyne detection and thresholding, complicating efforts to implement

low-latency feedback conditioned on the measurement result [51, 52]. The physical

footprint, wiring heat load, and latency associated with conventional amplifier-based

qubit measurement stand as major impediments to scaling superconducting qubit tech-

nology.

An alternative approach involves entanglement of the qubit with the linear resonator

to create cavity pointer states characterized by large differential photon occupation,

followed by subsequent photodetection [53]. In our experiments Fig. 3.1(a), microwave

drive at one of the two dressed cavity frequencies maps the qubit state onto “bright”

and “dark” cavity pointer states. Discrimination of the states is performed directly
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Figure 3.1: Qubit state measurement using the JPM. (a) Measurement overview. Mi-
crowave drive at the dressed cavity resonance corresponding to the qubit |1〉 state
creates bright and dark cavity pointer states with large differential photon occupation.
These pointer states are detected using the JPM, which stores the measurement result
as a classical bit at the millikelvin stage. (b) Bright pointer detection. Microwaves
resonant with the JPM promote the circuit from the ground state of a metastable local
minimum (here, left potential well) to an excited state. The detector subsequently
undergoes a rapid tunneling transition that allows relaxation to the global minimum of
the potential (here, right potential well). (c) Dark pointer detection. Energy contained
in the dark pointer state is insufficient to induce a tunneling event. The presence (b)
or absence (c) of an interwell tunneling transition results in classically distinguishable
flux (oscillation) states in the detector.

at the millikelvin stage by the Josephson photomultiplier (JPM), a microwave photon

counter; we use no nonreciprocal components between the qubit and JPM. The JPM

is based on a single Josephson junction in an rf superconducting quantum interference

device (SQUID) loop that is biased close to the critical flux where a phase slip occurs.
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The circuit parameters are chosen to yield a potential energy landscape with one or

two local minima, depending on flux bias; the distinct local minima correspond to

classically distinguishable flux states in the device (see Appendix B.1). Once the JPM

is properly biased, the presence of resonant microwaves induces a rapid tunneling event

between the two classically distinguishable states of the detector [Fig. 3.1(b)]. In the

absence of microwave input, transitions occur at an exponentially suppressed dark rate

[Fig. 3.1(c)]. Thus, the absorption of resonant microwaves creates a readily measured

“click” [54].

3.2 Experimental Setup

The qubit and the JPM are fabricated on different silicon substrates and housed in

separate aluminum enclosures connected via a coaxial transmission line with charac-

teristic impedance Z0 = 50 Ω and length L0 = 14 cm (see Appendices B.2-B.3). The

qubit chip [purple circuit in Fig. 3.2(a)] incorporates an asymmetric transmon [Fig.

3.2(b)] that is capacitively coupled to a half-wave coplanar waveguide (CPW) res-

onator, the qubit cavity, with frequency ω1/2π = 5.020 GHz and qubit-cavity coupling

strength g1/2π = 110 MHz [27, 29, 55]. The qubit is operated at a fixed frequency

ωq/2π = 4.433 GHz and has an anharmonicity α/2π = −250 MHz.

The JPM [green circuit in Fig. 3.2(a)] is based on the capacitively-shunted flux-

biased phase qubit [56]. The JPM is capacitively coupled to a local auxiliary CPW
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Figure 3.2: Experimental setup. (a) Circuit schematic. The qubit circuit (purple)
is connected to the JPM circuit (green) via a coaxial transmission line (black) (see
Tables B.1-B.3). (b) Micrograph of the transmon circuit with superconducting island
(green), qubit cavity (red), and Josephson junctions (orange). (c) Micrograph of the
JPM circuit (capture cavity not shown) with its 3+3 turn gradiometric loop inductance
Lg (blue), single Josephson junction with critical current I0 (orange), parallel-plate
capacitor Cs (red), and on-chip flux bias line with mutual inductance M (green). (d)
JPM spectroscopy versus external flux. Insets show cartoons of a phase particle bound
to the left and right wells. (e) Zoom in of the avoided level crossing between the JPM
and capture cavity.
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resonator, the capture cavity, with bare frequency ω1/2π = 5.028 GHz and coupling

strength g1/2π = 40 MHz. A micrograph of the JPM is shown in Fig. 3.2(c). The

circuit involves a single Al-AlOx-Al Josephson junction with critical current I0 = 1 µA

embedded in a 3+3 turn gradiometric loop with inductance Lg = 1.1 nH. The junction

is shunted by an external parallel-plate capacitor Cs = 2 pF. The plasma frequency

of the JPM is tunable with external flux from 5.9 GHz to 4.4 GHz [Fig. 3.2(d, e)],

allowing for both resonant and dispersive interactions between the JPM and capture

cavity.

The qubit and capture cavities are capacitively coupled to the mediating transmis-

sion line (see Appendix B.4 and Tables B.1-B.3). Following pointer state preparation,

microwave energy leaks out of the qubit cavity and a fraction of that energy is trans-

ferred to the capture cavity [57]. Without an intervening isolator or circulator to damp

unwanted reflections, the finite length L0 of the transmission line admits a standing

wave structure with an approximate mode spacing of vp/2L0, where vp is the phase

velocity of propagation in the cable. With these complications in mind, L0 was chosen

to avoid destructive interference in the vicinity of ω1 and ω2 which can significantly

degrade photon transfer efficiency (see Appendix B.5).
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3.3 JPM Measurement Sequence

In the timing diagram of the measurement [Fig. 3.3(a)], the cartoon insets depict the

dynamics of the JPM phase particle at critical points throughout the measurement

sequence. We begin with a deterministic reset of the JPM, which is accomplished

by biasing the JPM potential into a single-well configuration (see Appendix B.1). A

depletion interaction between the JPM and capture cavity mode immediately follows

in order to dissipate spurious microwave excitations generated during reset. Additional

details of this depletion process are described later in the manuscript and in Fig. 3.4(a,

b). Next, we use mode repulsion between the JPM and capture cavity to tune ω2 in

order to maximize photon transfer efficiency. The response of the capture cavity to an

applied drive tone at four distinct JPM-capture cavity detunings, and thus four different

values of ω2, is shown in Fig. 3.3(b); the detuning is chosen such that ω1 = ω2. At the

beginning of the tune and capture stage, a qubit X-gate (I-gate) is performed and a

subsequent qubit cavity drive tone is applied to prepare the bright (dark) pointer state

(see Appendix B.6). The cavities are held on resonance for 750 ns to allow the pointer

states to leak from the qubit cavity to the capture cavity; this time was determined by

maximizing measurement fidelity with respect to the drive pulse duration. The bright

pointer state corresponds to a mean qubit cavity photon occupation n̄1 ∼ 10, calibrated

using the ac Stark effect [Fig. 3.3(e)] (see Appendix B.8) [58, 59]. After pointer state

transfer, the JPM is biased into resonance with the capture cavity and occupation of
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that mode induces intrawell excitations of the phase particle on a timescale π/(2g2 ∼

6 ns [Fig. 3.3(c)] [20]. Finally, a short (∼ 10 ns) bias pulse is applied to the JPM

to induce interwell tunneling of excited states [60]; the amplitude of the bias pulse is

adjusted to maximize tunneling contrast between qubit excited and ground states [Fig.

3.3(d)]. At this point the measurement is complete: the measurement result is stored

in the classical flux state of the JPM. To retrieve the result of qubit measurement

for subsequent analysis at room temperature, we use a weak microwave probe tone to

interrogate the plasma resonance of the JPM following measurement. The JPM bias

is adjusted so that the plasma frequencies associated with the two local minima in the

potential are slightly different; reflection from the JPM can distinguish the flux state

of the detector with > 99.9% fidelity in under 500 ns (see Appendix B.4).

Each measurement cycle yields a binary result -“0” or “1” - the classical result of

projective quantum measurement. To access qubit state occupation probabilities, the

measurement is repeated 10,000 times. The JPM switching probabilities represent raw

measurement outcomes, uncorrected for state preparation, relaxation, or gate errors.

In Fig. 3.3(f) and 3.3(g) we display the raw measurement outcomes for qubit Ramsey

and Rabi experiments, respectively. The JPM measurements achieve a raw fidelity of

92%. The bulk of our fidelity loss is due to qubit energy relaxation during pointer state

preparation and dark counts, which contribute infidelity of 5% and 2%, respectively. In

our setup, dark counts stem from both excess |1〉 population of the qubit and spurious
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microwave energy contained in our dark pointer state. We attribute the remaining

infidelity to imperfect gating and photon loss during pointer state transfer. The qubit

T1 of 6.6 µs measured in these experiments is consistent with separate measurements of

the same device using conventional heterodyne readout techniques; we see no evidence

of JPM-induced degradation of qubit T1.

3.4 Measurement Backaction and QNDness

As noted earlier, JPM switching events release a large energy of order 100 photons as

the JPM relaxes from a metastable minimum to the global minimum of its potential

[61]. It is critical to understand the backaction of JPM switching events on the qubit

state. The JPM tunneling transient has a broad spectral content, and Fourier compo-

nents of this transient that are resonant with the capture and qubit cavities will induce

a spurious population in these modes that will lead to photon shot noise dephasing

of the qubit [62, 63]. In Fig. 3.4(a) we show the results of qubit Ramsey scans per-

formed with (orange) and without (blue) a forced JPM tunneling event prior to the

experiment. In the absence of any mitigation of the classical backaction, qubit Ramsey

fringes show strongly suppressed coherence and a frequency shift indicating spurious

photon occupation in the qubit cavity [64]. However, we can use the intrinsic damping

of the JPM mode itself to controllably dissipate the energy in the linear cavities and

fully suppress photon shot noise dephasing. Immediately following JPM reset, the JPM
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is biased to a point where the levels in the shallow minimum are resonant with the

linear cavity modes. Energy from the capture cavity leaks back to the JPM, inducing

intrawell transitions; at the selected bias point, the interwell transition probability is

negligible. The JPM mode is strongly damped, with quality factor Q ∼ 300, set by the

loss tangent of the SiO2 dielectric used in the JPM shunt capacitor [1]. As a result, the

energy coupled to the JPM is rapidly dissipated. With this deterministic reset of the

cavities, fully coherent qubit Ramsey fringes are recovered for depletion times ≥ 40 ns

as shown in Fig. 3.4(b). We reiterate that no nonreciprocal components are used in

these experiments to isolate the qubit chip from the classical backaction of the JPM.

In Fig. 3.4(c) we explore the quantum non-demolition (QND) character of our mea-

surement protocol [65]. We prepare the qubit in the superposition state (|0〉− i|1〉)/
√

2

aligned along the -y-axis of the Bloch sphere. We verify the state by performing an

overdetermined tomography [56]. Here the direction θ and length t of a tomographic

pulse are swept continuously over the equatorial plane of the Bloch sphere prior to

measurement. For control pulses applied along the x-axis, the qubit undergoes the

usual Rabi oscillations; for control applied along y, the qubit state vector is unaf-

fected. Following an initial JPM-based measurement (including an additional 1.4 µs

of delay for qubit cavity ringdown), we perform a tomographic reconstruction of the

qubit state by applying a pre-rotation and a final JPM-based measurement. In the

right-hand panel of Fig. 3.4(c), we display tomograms corresponding to the classical
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measurement results “0” (top) and “1” (bottom). When the measurement result “0”

is returned, we find a tomogram that overlaps with the ideal |0〉 state with fidelity 91%

(see Appendix B.9). When the result “1” is returned, the measured tomogram corre-

sponds to overlap fidelity of 69% with the |1〉 state. The loss in fidelity for the qubit

|1〉 state is consistent with the measured qubit T1 time of 6.6 µs and the 2.8 µs between

successive measurement drive tones. We conclude that our JPM-based measurement

is highly QND.

3.5 Conclusion

Our high-fidelity, fast photon counter-based qubit measurement approach provides ac-

cess to the binary result of projective quantum measurement at the millikelvin stage

without the need for nonreciprocal components between the qubit and counter. In a

future system, JPM-based readout could form the basis of the measurement side of a

robust, scalable interface between a quantum array and a proximal classical controller,

for example, by encoding the flux state of the JPM onto classical single flux quantum

(SFQ) voltage pulses [66, 67] for subsequent post-processing via SFQ-based digital logic

[68].
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Figure 3.3: JPM-based qubit measurement. (a) We begin by resetting the JPM into a
well-defined flux state. A subsequent depletion interaction removes spurious microwave
excitations generated during reset [see Fig. 3.4(a, b) for more detail]. (b) Next, we
tune the capture cavity frequency to maximize transfer efficiency from the qubit cavity.
The response of the capture cavity to an applied drive at four distinct JPM-capture
cavity detunings is shown; the detuning is chosen such that ω2 = ω1. During the
tune and capture interval, a qubit X-gate (I-gate) is applied and microwave drive at
the dressed |1〉 cavity resonance is used to prepare the bright (dark) pointer state.
As we drive the qubit cavity, a fraction of the microwave energy is transferred to the
capture cavity during this capture step. (c) The JPM is then tuned into resonance with
the capture cavity for photodetection. Photons present in the capture cavity induce
intrawell transitions of the JPM to higher excited states. (d) Finally, a brief bias pulse
is applied to induce tunneling of excited JPM states. The arrows on the bottom axes
in (c)-(d) indicate optimal bias parameters. At this point the measurement is complete
and the result is encoded in the classical flux state of the JPM. Microwave reflectometry
is subsequently used to interrogate the JPM. (e) Stark spectroscopy used to calibrate
qubit cavity photon occupation. JPM-detected Ramsey fringes and Rabi oscillations
versus qubit drive detuning are shown in (f) and (g), respectively.
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Figure 3.4: Mitigating backaction and preserving QND properties. (a) The JPM
switching event releases energy of order 100 photons, inducing spurious population of
the capture and qubit cavities. The right-hand panel shows baseline qubit Ramsey
fringes (blue) and Ramsey fringes measured after a forced tunneling event by the JPM
(orange). (b) Following the fast flux pulse that induces JPM tunneling, we adjust
JPM bias so that energy deposited in the cavities is dissipated in the JPM, yielding a
deterministic reset of the cavities. The color plot shows qubit Ramsey fringes versus
duration of the depletion interaction between the JPM and the capture cavity. (c)
Qubit tomography following JPM-based measurement. We prepare the superposition
state (|0〉 − i|1〉)/

√
2 and verify the state with overdetermined qubit tomography (left

panel). To characterize the qubit state after JPM-based measurement, we prepare the
same superposition state, measure with the JPM, and then perform qubit tomography
on the resulting state. Qubit tomography conditioned on the JPM measurement shows
high overlap with target states |0〉 (top right) and |1〉 (bottom right).
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Chapter 4

JPM Experiment II

We describe an approach to the high-fidelity measurement of a superconducting qubit

using an on-chip microwave photon counter1. The protocol relies on the transient re-

sponse of a dispersively coupled measurement resonator to map the state of the qubit to

“bright” and “dark” cavity pointer states that are characterized by a large differential

photon occupation. Following this mapping, we photodetect the resonator using the

Josephson Photomultipler (JPM), which transitions between classically distinguishable

flux states when cavity photon occupation exceeds a certain threshold. Our technique

provides access to the binary outcome of projective quantum measurement at the mil-

likelvin stage without the need for quantum-limited preamplification and thresholding

at room temperature. We achieve raw single-shot measurement fidelity in excess of

98% across multiple samples using this approach in total measurement times under

1This chapter is a reformated version of Ref. [69]
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500 ns. In addition, we show that the backaction and crosstalk associated with our

measurement protocol can be mitigated by exploiting the intrinsic damping of the JPM

itself.

4.1 Introduction

Fast, accurate state measurement is critical to the implementation of quantum error

correction [40], and global optimization of a large-scale quantum processor demands

minimization of physical resources required for qubit measurement [68]. Prior work

on the measurement of superconducting qubits has focused on suppression of errors

through combined improvements in measurement speed [44, 50, 70] and near-quantum-

limited preamplification of the measurement signal [49, 71]; however, the physical foot-

print of the superconducting amplifiers, nonreciprocal circuit elements, and hetero-

dyne detectors required to implement high-fidelity amplifier-based qubit measurement

represents a significant obstacle to scaling. There have been efforts to minimize the

hardware overhead associated with qubit measurement using Josephson circulators and

directional amplifiers [72–76], but the instantaneous bandwidths of these elements are

at present too small to support multiplexed qubit measurement, the primary advantage

of amplifier-based approaches [44, 70]. In related work, state-of-the-art measurement

efficiencies were achieved by directly embedding a qubit within a Josephson parametric

amplifier [77]; however, this approach is not amenable to integration with large-scale
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multiqubit arrays. While continued research in these directions is certainly essential,

it is clear that there are major obstacles to be overcome.

In this work, we pursue an alternative approach to the measurement of supercon-

ducting qubits based on integrated microwave photon counters. The measurement

protocol relies on the transient response of a dispersively coupled linear resonator to

map the state of the qubit onto “bright” and “dark” cavity pointer states characterized

by a large differential photon occupation [41, 53] [Fig. 4.1(a)]. Following this map-

ping, we photodetect the resonator using the Josephson Photomultipler (JPM) [39, 54],

which operates as a threshold detector of microwave photon occupation [Fig. 4.1(b)].

The JPM is based on a capacitively shunted rf Superconducting QUantum Interfer-

ence Device (SQUID) with circuit parameters chosen to yield a double-well potential

energy landscape [22]. JPM photodetection involves resonant transfer of energy from

the bright pointer state of the readout cavity to the JPM mode, followed by a tunneling

transition that changes the flux state of the JPM [Fig. 4.1(c)]; when the readout cavity

is prepared in the dark state, no tunneling transition occurs. The flux state of the JPM

represents a classical bit – the outcome of projective quantum measurement – that in

principle can be accessed at the millikelvin stage, without the need for heterodyne

detection and thresholding at room temperature. Without any fine tuning of qubit or

JPM parameters, we achieve raw single shot measurement fidelities (uncorrected for

qubit relaxation and initialization errors) in excess of 98% for total measurement times
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Figure 4.1: Qubit measurement with a photon counter. (a) Dispersive coupling of the
qubit and the readout resonator yields distinct dressed frequencies of the cavity ωr,|0〉
and ωr,|1〉 corresponding to qubit states |0〉 and |1〉, respectively. The application of a
microwave drive at frequency ωd ' ωr,|1〉 displaces the photon field inside the resonator
in a qubit state-dependent manner. For resonant drive (orange), the field displaces
along a single quadrature axis (drawn as Re[αr], where |αr〉 is the coherent state of
the resonator). For off-resonant drive (blue), the readout cavity acquires a transient
occupation; however, the cavity state coherently oscillates back toward vacuum at a
time π/χ, where 2χ = ωr,|0〉 − ωr,|1〉. Therefore, drive for duration td = π/χ maps the
qubit state to “bright” and “dark” cavity pointer states with large differential photon
occupation. (b) Following pointer state preparation, we photodetect the resonator
using the JPM, which acts as a threshold discrimiantor of microwave photon occupation
n̄r. (c) Resonant interaction of the JPM with the cavity leads to conditional excitation
of the JPM followed by a tunneling transition between classically distinguishable flux
states of the device.
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around 500 ns. While the current experiments involve chips comprising two qubits,

each with its own dedicated JPM, the approach can be scaled to arbitrary system size,

as the physical footprint of the JPM is well matched to the footprint of the qubit.

JPM-based measurement requires at most one additional flux bias line per qubit chan-

nel, while greatly relaxing the physical resources needed downstream of the millikelvin

stage.

This manuscript is organized as follows. In Section 4.2, we discuss the design and

characterization of our qubit-JPM circuit and provide a detailed description of the qubit

measurement sequence. In Section 4.3, we describe optimization of photon number

contrast of the cavity pointer states with respect to resonator drive parameters. In

Section 4.4, we analyze the performance of the JPM-based measurement protocol and

present a detailed fidelity budget. In addition, we discuss the long-term stability of the

measurement and demonstrate the robustness of our protocol with respect to device-

to-device variation. In Section 4.5, we discuss backaction and measurement crosstalk,

and we demonstrate that intrinsic damping of the JPM itself is a resource that can be

exploited to suppress initialization and crosstalk errors. In addition, we explore the

degradation of measurement fidelity as the measurement cycle time is pushed below

10 µs. Finally, in Section 4.6, we conclude and discuss prospects for the construction

of a scalable quantum-to-classical interface at millikelvin temperatures.
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4.2 Circuit Design and Bring-up

Our circuit consists of two coupled qubit-JPM systems integrated onto a single silicon

chip as shown in the micrograph of Fig. 4.2(a). The circuit schematic is shown in

Fig. 4.2(b), which introduces notation that will be used throughout the text. In this

section, we report the parameters of qubit-JPM pair q1-j1 on chip #1; parameters for

the other qubit-JPM pairs can be found in Table C.1. For information about sample

fabrication and control wiring, see Appendices C.1 and C.2, respectively.

(b)(a)

j1 q1 j2q2
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z1 z2

xy1 xy2
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jr1 jr2
j1 j2
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Figure 4.2: Device layout. (a) Optical micrograph of the circuit with overlaid text
to indicate port functionality and the locations of critical circuit components. Each
qubit-JPM system incorporates a transmon qubit q1(2), with excitation line xy1(2)
and flux bias line z1(2), and a JPM j1(2), with dedicated readout line jr1(2) and flux
bias line jz1(2). Each qubit-JPM pair is coupled to a half-wave CPW resonator r1(2).
(b) Schematic diagram of the circuit. (c) False-color micrograph of the JPM element.

The qubit-JPM system incorporates a frequency-tunable transmon that is dis-

persively coupled to a half-wave coplanar waveguide (CPW) measurement resonator
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[27, 29, 78] with bare frequency ωr/2π = 5.693 GHz and qubit-resonator coupling

strength gq,r/2π = 90 MHz. The total energy decay rate of the measurement resonator

κr = 1/(1.53 µs), which is approximately two orders of magnitude smaller than that

for a typical Purcell-filtered design [44, 50, 70]. The transmon has a maximum tran-

sition frequency ωq/2π = 5.95 GHz and an anharmonicity η/2π = −225 MHz. To

avoid Purcell suppression of the qubit energy relaxation time [17], we operate at qubit

frequencies below 5.1 GHz, which corresponds to a Purcell limit to qubit T1 of 66 µs.

We remark on a distinct advantage of our approach to qubit measurement compared

to amplifier-based implementations: by reading out the measurement resonator with

the JPM, we avoid the usual tradeoff between measurement speed and Purcell limit to

T1, as coupling of the measurement resonator to its readout environment can be tuned

over a broad range on nanosecond timescales by appropriate variation of the JPM bias

point. In principle, the value of κr can be made arbitrarily small without affecting the

measurement speed; as a practical matter, however, a balance must be struck to ensure

that the power delivered to the measurement resonator is sufficient for creation of the

bright pointer state.

At the opposite voltage antinode, the measurement resonator is capacitively cou-

pled to the JPM with coupling strength gj,r/2π = 62 MHz. This coupling strength

is optimal, as it corresponds to a half-swap period π/(2gj,r) = 4 ns and is thus com-

patible with GS/s waveform generation and comparable to the energy relaxation time
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of the JPM T1,j = 5 ns. The JPM circuit is formed by the parallel combination of

a 3+3-turn gradiometric loop with inductance Lj = 1.3 nH, a parallel-plate capaci-

tance Cj = 2.2 pF, and a single Al-AlOx-Al Josephson junction with critical current

I0j = 1.4 µA [see Fig. 4.2(b, c)]. The plasma frequency of the JPM is tunable with

external flux from 4 to 7.3 GHz, allowing for both resonant and far-detuned interac-

tions with the measurement resonator. To retrieve qubit measurement results from the

JPM, the circuit is read out in reflection using the capacitively coupled readout port

labeled jr1(2) in Fig. 4.2(a). The two metastable flux states of the JPM correspond to

distinct plasma frequencies; therefore, microwave reflectometry in the vicinity of these

resonances encodes the JPM flux onto the amplitude and phase of the reflected signal.

Device bring-up begins with JPM spectroscopy versus external flux, which yields

the locations of the reset bias points that initialize the JPM in the left and right wells

of its double-well potential along with the JPM-resonator avoided level crossing [see

Fig. 4.3(a)]. Next, we maximize contrast of JPM reflectometry for states prepared in

the left and right wells over the space of JPM readout flux, measurement frequency,

and JPM drive power [Fig. 4.3(b)]. Using optimized parameters, the fidelity with

which we read out the flux state of the JPM is better than 99.99%. In the following,

we always initialize the JPM in the left well of its potential and refer to the probability

of a transition to the right well as the tunneling probability.

A timing diagram of the qubit measurement sequence is shown in Fig. 4.4(a); the
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Figure 4.3: JPM bring-up. (a) JPM spectroscopy versus external flux. The spec-
troscopy signal is acquired from a reflection measurement at JPM readout ports jr1(2).
Heterodyne detection of this signal yields in-phase (I) and quadrature (Q) components
that depend on the applied frequency, the external flux bias of the JPM, and the flux
state of the device. Arrows indicate left- and right-well reset bias points, where the po-
tential energy landscape of the JPM supports only a single minimum. The enlargement
to the right shows the JPM-resonator avoided level crossing. Following pointer state
preparation, the JPM is biased to this point to induce resonant excitation of the JPM
by the bright pointer. (b) Contrast in IQ signal for reflection from the JPM prepared
in the left and right wells of the double-well potential. The white circle indicates the
optimal parameters for JPM readout. IQ clouds for JPM readout at this point are
shown on the right; here, the separation fidelity is better than 99.99%.

cartoon insets depict the evolution of the JPM phase particle during critical steps of

the measurement sequence. The duration of each step is indicated at the top of each

panel; for clarity, the time axis is not drawn to scale. During qubit operations prior



66

Qubit 
gates

Resonator 
drive

1.08 1.11 1.14 1.17 1.20
0

0.2

0.4

0.6

0.8

0 50 100 150 200
Drive Time (ns)

0

0.2

0.4

0.6

0.8

1

Tu
nn

el
in

g 
Pr

ob
ab

ilit
y

Prepare Pointers Photodetect Tunnel Relax JPM Readout JPM Reset

90-200 ns 5 ns 5 ns 30 ns 250 ns 70 ns

1

(a)

(b) (c) (d)

JPM Flux (    )

? ?

0 20 40 60 80 100
Photodetection Time (ns)

0

0.2

0.4

0.6

0.8

1

15 ns 90-200 ns

Relax Tunnel

I / X

Figure 4.4: JPM-based qubit measurement sequence. (a) Measurement timing dia-
gram; see text for detailed discussion. (b) Time evolution of high-contrast microwave
cavity pointer states as detected by the JPM for qubits initialized in states |0〉 (blue)
and |1〉 (orange). The optimal time for pointer state drive is indicated by the red
arrow. (c) JPM tunneling probability versus photodetection time for qubits prepared
in states |0〉 and |1〉. The optimal time for JPM-cavity interaction is indicated by
the red arrow. (d) JPM tunneling probability versus tunnel bias amplitude for qubits
prepared in states |0〉 and |1〉. The S-curves are well separated, corresponding to a raw
measurement fidelity of 98.4% (see Section 4.4). The optimal tunnel bias point is indi-
cated by the red arrow. Following the tunneling step, the JPM bias point is adjusted
to the location indicated by the black arrow to allow the tunneled phase particle to
relax. Following the tunneling event, the flux state of the JPM is read out in reflection
using the methods discussed in Fig. 4.3(b). Finally, the JPM is reset into the left-well
state.

to measurement, the JPM is biased at its flux-insensitive upper sweet spot to min-

imize JPM-induced damping of the measurement resonator. We prepare the target

qubit state by applying the X-gate (I-gate); to achieve high-fidelity single-qubit gates,

we implement fast (15 ns-long) cosine-shaped derivative reduction by adiabatic gate

(DRAG) pulses with a static detuning correction [79–81]. At the start of the mea-
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surement sequence, microwave drive at frequency ωr,|1〉 is used to prepare the bright

(dark) pointer state. In Fig. 4.4(b), we show the time evolution of optimized pointer

states as detected by the JPM (see Section 4.3 for methods); the resonator drive time

td = 105 ns for the datasets shown in Fig. 4.4(c, d). Next, the JPM is biased into

resonance with the measurement resonator to induce intrawell excitations of the phase

particle conditioned on the qubit state [20]. The energy transferred into the JPM is

maximal for a photodetection time of 5 ns ≈ π/2gj,r [Fig. 4.4(c)]. This timescale is

independent of the photon occupation in the resonator, as one expects for coupled har-

monic systems: at the JPM-resonator avoided level crossing, the left well of the JPM

supports approximately 50 bound states. Immediately following photodetection, the

JPM is biased towards the critical flux at which the shallow minimum in the potential

energy landscape vanishes in order to induce interwell tunneling of excited states [Fig.

4.4(d)] [60]. The duration and amplitude of this bias pulse are chosen to maximize

tunneling contrast between qubit excited and ground states; the optimal tunnel bias

point is indicated by the red arrow in Fig. 4.4(d). We then adjust the JPM bias to

the location indicated by the black arrow in Fig. 4.4(d) to allow the tunneled phase

particle to relax for 30 ns. Without this step, a small fraction (∼ 5%) of the tunneled

population migrates back into the left well, resulting in a degradation of measurement

fidelity. To retrieve the qubit measurement results, we read out the JPM state using

the methods discussed in Fig. 4.3(b). Finally, the JPM is reset into the left-well state
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for use in subsequent experiments.

4.3 Pointer State Preparation

The success of our measurement protocol hinges on our ability to create high-contrast

microwave cavity pointer states conditioned on the state of the qubit [see Fig. 4.1].

To achieve this experimentally, we need to determine the optimal resonator drive fre-

quency, time, and amplitude. To optimize pointer state preparation, we begin with

two-dimensional scans of the resonator with sweeps of both drive frequency and time,

as shown in Fig. 4.5(a, b). Both datasets are taken over identical ranges and differ

only in the prepared qubit state. The cartoons above each plot indicate that we are

scanning over a range of frequencies containing both dressed resonances of the cavity,

with the dressed resonance corresponding to the prepared qubit state drawn using a

solid line. Optimal measurement contrast is achieved at drive parameters that max-

imize the difference in tunneling probability for the prepared qubit states |0〉 and |1〉

[Fig. 4.5(c)]; the optimal parameters correspond roughly to cavity drive at frequency

ωd = ωr,|1〉 (overlaid squares) and ωd = ωr,|0〉 (overlaid circles) for a duration td ' π/χ.

Slight deviation of the optimal drive frequency from the two dressed cavity resonance

frequencies and of the optimal drive time from π/χ can be understood as the result

of nonlinearity of the measurement resonator inherited from the qubit; this nonlin-

earity similarly limits the size of the bright pointer state that can be created with
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a naive cavity ringup pulse applied at fixed frequency. As the dressed cavity reso-

nance corresponding to qubit |1〉 disperses less strongly with power than the resonance

corresponding to qubit |0〉, we achieve best measurement fidelity with cavity drive

ωd ' ωr,|1〉, meaning that the qubit |1〉 (|0〉) state is mapped onto the bright (dark)

cavity pointer state.
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Figure 4.5: Pointer state preparation. (a) JPM tunneling probability versus resonator
drive time and frequency with the qubit prepared in |0〉. (b) As in (a), but with the
qubit prepared in |1〉. (c) The difference in these scans allows determination of the
optimal drive frequency and time that maximize single-shot measurement fidelity. We
find two local maxima in measurement fidelity for drive frequencies near ωr,|0〉 (overlaid
circles) and ωr,|1〉 (overlaid squares) for a duration td ' π/χ. For comparison with parts
(d)-(e), these datasets were taken at a resonator drive amplitude of 0.8 arb. units. (d)
JPM tunneling probability versus resonator drive amplitude and time with the qubit
prepared in the |0〉 state. This scan uses the drive frequency ωd ' ωr,|1〉 found in parts
(a) and (b). (e) As in (d), but with the qubit prepared in |1〉. (f) The difference in
these scans yields the optimal drive amplitude and time for pointer state preparation
as indicated by the overlaid X symbols.
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Next, we perform two-dimensional scans of the resonator with sweeps of both drive

amplitude and time, as shown in Fig. 4.5(d, e). The cartoons above each plot indicate

the frequency of the cavity drive with respect to the dressed cavity resonances. Taking

the difference between these scans yields the optimal drive amplitude and time as

shown in Fig. 4.5(f). Scans of type Fig. 4.5(a, b) and Fig. 4.5(d, e) are repeated

iteratively to optimize single-shot measurement fidelity over the space of resonator

drive time, frequency, and amplitude, with the final results displayed in Fig. 4.4(b).

This method converges on a drive frequency that is −2.1 MHz detuned from ωr,|1〉/2π,

leading to a 22% decrease in the resonator drive time as compared to π/χ. The

bright pointer state corresponds to a mean resonator occupation n̄r ≈ 27 photons,

determined via the ac Stark effect (see Appendix C.3 for further detail). Ultimately,

photon number contrast is limited by imperfect preparation of the dark pointer state:

as occupation of the dark pointer becomes comparable to the critical photon number

ncrit = (∆q,r/gq,r)
2/4 [41], the nonlinearity of the resonator prevents coherent oscillation

back to the vacuum state [82, 83], contributing an infidelity around 0.6% (see discussion

in the next section). We expect that it will be straightforward to suppress this source

of infidelity by a slightly more complicated ringup sequence involving either composite

pulses or a chirped frequency drive.
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4.4 Measurement Fidelity

We analyze the performance of JPM-based measurement in terms of the fidelity

F = 1− P (1|0)− P (0|1), (4.1)

where P (i|j) is the probability of measuring the qubit in state |i〉 given that it was

nominally prepared in state |j〉 [84]; here, detection of a tunneling transition from

the left well to the right well of the JPM constitutes measurement of the qubit |1〉

state, while the absence of a tunneling transition constitutes measurement of qubit |0〉.

Using the measurement sequence described in Fig. 4.4, we perform a standard Rabi

experiment to identify values for P (1|1) and P (1|0) as shown in Fig. 4.6(a); assuming

that leakage errors are negligible, we have F = P (1|1)− P (1|0). In order to faithfully

estimate the conditional probabilities P (i|j), the measurement sequence is repeated

5,000 times. Prior to each measurement, an active qubit reset step is performed to

extract unwanted excess |1〉 population from the qubit (see Appendix C.5 for further

detail); without this step, the excess |1〉 state population of our qubits is approximately

4%.

To characterize the long-term stability of JPM-based measurement, we perform

20,000 independent determinations of F evenly spaced over the span of twelve hours;

the results are shown in the histogram of Fig. 4.6(b). We achieve an average raw

measurement fidelity F̄ = 98.4 ± 0.2%, uncorrected for state preparation, relaxation,

or gate errors. A detailed budget of measurement infidelity is shown in Table 4.1.
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The nonvanishing P (1|0) contains contributions both from qubit initialization errors

and from imperfect dark pointer state preparation. Using the methods described in

Appendix C.4, we infer an excess |1〉 population of 0.3% following active qubit reset.

This initialization infidelity degrades both P (0|0) and P (1|1), contributing an overall

infidelity of 0.6% to our measurement. We attribute the remaining portion of P (1|0)

to imperfect dark pointer state preparation, for which we obtain 0.6%. Nonvanishing

P (0|1) contains additional contributions from qubit relaxation and X-gate error. Qubit

relaxation with timescale T1 = 16.9 µs contributes an infidelity td/2T1 = 0.3%, where

td = 105 ns is the drive time for pointer state preparation. Finally, we use interleaved

randomized benchmarking (IRB) [85] to characterize the infidelity of our X-gate, for

which we find 0.1%.

We have characterized measurement fidelity for system q1-j1 on chip #1 over a

range of qubit operating points, corresponding to a range of optimal resonator drive

times from 90-200 ns; results are shown in rows 1-4 of Table 4.2. For all experiments,

we maintain the same readout parameters calibrated at the initial qubit bringup point

ωq/2π = 5.037 GHz, apart from the resonator drive time, which must be matched

to π/χ. We maintain similar performance across all four qubit frequencies. This

demonstrates that fine-tuning of JPM bias parameters is not needed to address qubits

that resonate over a broad range of frequencies.

While the above results were obtained for the single qubit-JPM pair q1-j1 on chip
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Figure 4.6: Measurement fidelity and long-term stability. (a) JPM tunneling proba-
bility versus qubit rotation angle to identify values for P (1|0) (0 rotation) and P (1|1)
(π rotation). For this dataset, P (1|0) = 0.4% and P (1|0) = 99.0%. (b) Histogram
of measurement fidelity F logged over the span of twelve hours (20,000 independent
measurements of F ), demonstrating the robustness of JPM-based measurement with
respect to long-term drift. A Gaussian fit to the histogram yields an average fidelity
F̄ = 98.4% with standard deviation σF = 0.2%.

#1, we observe similar performance for the three other qubit-JPM pairs that we have

examined; measurement fidelities for these devices are reported in rows 5-7 of Table 4.2.

The durations of the flux bias parameters determined from our bring-up of pair q1-j1

on chip #1 were used for all remaining qubit-JPM pairs, without full optimization of

each separate qubit-JPM system. The raw single-shot measurement fidelity averaged
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Source of Infidelity Infidelity
(%)

Calculation
Method

Excess |1〉 population 0.6 low power drive
Imperfect dark pointer 0.6 high power drive

Qubit relaxation 0.3 td/2T1

X-gate 0.1 IRB [85]

Table 4.1: Infidelity budget for the data displayed in Fig. 4.6(b).

Chip
#

Qubit-JPM
Pair

ωq/2π
(GHz)

Resonator Drive
Time (ns)

Measurement
Fidelity (%)

1 q1-j1 5.037 105 98.4
1 q1-j1 5.098 90 98.3
1 q1-j1 4.980 150 97.1
1 q1-j1 4.833 200 98.1
1 q2-j2 5.069 147 98.0
2 q1-j1 5.068 128 97.6
2 q2-j2 5.062 163 98.3

Table 4.2: Measurement fidelity within and across devices. The first entry corresponds
to the data shown in Fig. 4.6(b), and therefore represents the average fidelity F̄ . The
remaining entries (rows 2-7) correspond to single measurements of F .

over the four qubit-JPM pairs is 98%.

4.5 Backaction and Crosstalk

JPM tunneling events deposit an energy of order 100 photons on chip as the phase

particle relaxes to the global minimum of the potential [39, 61] [see Fig. 4.7(a)]. The

associated transient contains spectral components at the frequencies of the readout

resonator and the qubit, and as a result can transfer energy to these modes [Fig.

4.7(b)]. It is therefore critical to characterize the backaction and crosstalk associated

with JPM tunneling events.
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We begin with a study of JPM-induced backaction using the Rabi experiment de-

scribed in Fig. 4.7(c). Prior to the qubit drive pulse, we force a tunneling event in the

JPM and perform a deterministic reset of the JPM in the left well. In the absence of

mitigation, the Rabi scan yields a nearly constant tunneling probability of 80% as a

function of the qubit rotation angle, indicating severe corruption of the qubit and the

readout resonator by the JPM tunneling event. Next, we perform JPM-assisted res-

onator reset prior to the Rabi experiment as a potential mitigation strategy. Namely,

we bias the JPM into resonance with the readout cavity for 100 ns as a means to de-

plete the cavity of photons released by the JPM tunneling event [39]. With resonator

reset, we recover Rabi oscillations with low visibility ∼ 30%. In a further refinement,

we adjust the bias point of the qubit during the JPM tunneling event from 5.1 GHz

down to 4.4 GHz in order to minimize the spectral content of the tunneling transient

at the qubit frequency; we refer to this as a hide bias step. By concatenating the

hide bias step with resonator reset, we obtain a Rabi visibility ∼ 75%. Finally, we

append a JPM-assisted qubit reset step to the end of the mitigation sequence. With

full mitigation, we recover all but 0.2% of the measurement fidelity compared to the

situation with no forced JPM tunneling event. The resonator and qubit reset steps

take a combined time of 200 ns (see Appendix C.5).

We characterize JPM-induced crosstalk to the unmeasured qubit by performing a

spin-echo experiment on one qubit following a forced JPM tunneling event on the neigh-
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Figure 4.7: Characterizing and mitigating backaction induced by the JPM tunneling
event. (a) Relaxation processes following a JPM tunneling event deposit an energy
of order 100 photons on chip. (b) By the ac Josephson relation, the JPM is modeled
as an effective voltage source Vj that can excite both the resonator and qubit modes.
(c) Rabi experiments preceded by a forced JPM tunneling event followed by various
mitigation steps. The hide step is accomplished by biasing the qubit to a frequency
where backaction from the forced tunneling event is minimal. With full mitigation
(i.e. qubit hide bias plus resonator and qubit reset), we recover all but 0.2% of the
measurement fidelity compared to the experiment with no forced JPM tunneling event.



77

0 4 8 12
Idle Gate Time (μs)

0

0.2

0.4

0.6

0.8

1

Tu
nn

el
in

g 
Pr

ob
ab

ilit
y

0 4 8 12
0

0.2

0.4

0.6

0.8

1

Tunnel/No 
Tunnel

Echo

Neighboring 
system:

System of 
interest:

Tunnel/No 
Tunnel

Echo

Neighboring 
system:

System of 
interest:

Resonator 
Reset

100 200 300 400
Number of Cliffords

0.5

0.6

0.7

0.8

0.9

Se
qu

en
ce

 F
id

el
ity

Standard RB

Interleaved X (No Tunnel)
Interleaved X (Tunnel)

Tunnel/No 
Tunnel

IRB

Neighboring 
system:

System of 
interest:

Resonator 
Reset

(a) (b) (c)100 ns 100 ns

Idle Gate Time (μs)
Tu

nn
el

in
g 

Pr
ob

ab
ilit

y

Figure 4.8: Characterizing and mitigating crosstalk induced by the JPM tunneling
event. (a) Spin echo data taken on the q1-j1 system on chip #1 with and without
a prior forced tunneling event on the q2-j2 system. The spin-echo gate sequence is
X/2− Idle/2−Y − Idle/2−X/2. We observe a factor of 2.6 reduction in the Gaussian
decay envelope of the spin-echo fringes with respect to the control experiment with
no forced tunneling event. (b) As in part (a), but with resonator reset on system
q2-j2 following the forced tunneling event. We recover identical spin-echo fringes with
respect to the control. (c) Interleaved randomized benchmarking (IRB) experiment to
quantify the performance of our crosstalk mitigation strategy. We measure identical
IRB gate fidelities for the tunnel and no tunnel cases following resonator reset on q2-j2
(see Table 4.3 for further detail).

boring qubit-JPM pair [see Fig. 4.8(a)]. We use spin-echo to probe qubit coherence

as opposed to a conventional Ramsey experiment in order to suppress the contribution

to dephasing from low-frequency 1/f magnetic flux noise [55, 86, 87]. We measure a

factor of 2.6 reduction in the Gaussian decay time of the spin-echo fringes with respect

to our control experiment 2, indicating the presence of unwanted crosstalk between

systems. We speculate that the enhanced dephasing is due to spurious photon occupa-

tion in the measurement resonator of the tunneled JPM, leading to photon shot noise

dephasing of the neighboring qubit via parasitic coupling [62, 63, 88]. To test this hy-

2The spin-echo decay envelope obtained from modeling photon shot noise dephasing using our
circuit parameters is well described by a Gaussian function of the idle gate time
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Interleaved
Gate

Gate Fidelity
(Tunnel)

Gate Fidelity
(No Tunnel)

X 99.8 ± 0.3% 99.8 ± 0.2%
X/2 99.9 ± 0.3% 99.9 ± 0.2%
I 99.9 ± 0.1% 99.9 ± 0.1%

Table 4.3: Interleaved randomized benchmarking results for the crosstalk experiments
described in Section 4.5. Each of the interleaved gates reported here has a total duration
of 15 ns.

pothesis, we add a resonator reset step following the forced tunneling event as shown in

Fig. 4.8(b). With resonator reset, we recover identical spin-echo fringes with respect

to the control experiment. To confirm that resonator reset fully mitigates crosstalk

of the JPM-based measurement, we use IRB to quantify single-qubit gate error with

and without a prior forced JPM tunneling event in the neighboring qubit-JPM system

[Fig. 4.8(c)] [85]. With resonator reset following the JPM tunneling event, we measure

identical interleaved gate fidelities for the tunnel and no tunnel cases, as summarized

in Table 4.3.

To implement a practical error-corrected superconducting quantum computer based

on the two-dimensional surface code, measurement repetition rates of order 1 MHz

will be required [89, 90]. For this reason, we analyze the dependence of JPM-based

measurement fidelity on the time between experiments using the measurement sequence

depicted in Fig. 4.9(a). We find that as the time between experiments decreases,

the fidelity P (1|1) with which we detect the bright pointer state degrades, with a

characteristic time for recovery of fidelity of 13 µs [see Fig. 4.9(b)]. We speculate that

the degradation in fidelity is due to enhanced loss in both the qubit and the JPM at
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high measurement repetition rates. To separately examine the contributions of the

JPM and the qubit to the loss of fidelity, we switch the roles of the bright and dark

pointer states as shown in Fig. 4.9(c). With the qubit |1〉 state mapped to the dark

cavity pointer, the measurement fidelity is insensitive to enhanced loss in the JPM, since

an elevated JPM relaxation rate would preserve the correct outcome for measurement

of the dark pointer state (namely, no tunneling event). However, in this case we do

see enhanced P (0|1) for measurement duty cycles below 5 µs, indicating a contribution

to infidelity either from enhanced qubit relaxation or from qubit initialization errors.

Similarly, when we map the qubit |0〉 state to the bright cavity pointer, the tunneling

probability P (0|0) is insensitive to qubit loss and dominated by enhanced loss in the

JPM element that prevents mapping of the bright pointer state to a tunneling event.

We conclude that the enhanced measurement infidelity observed at high repetition

rate is dominated by loss in the JPM, with a small contribution from increased qubit

errors at the highest repetition rates > 200 kHz. While the physics that drives this

degradation in fidelity is not presently understood, we speculate that the enhanced

loss in both the qubit and the JPM is mediated by the transfer of energy released

in the tunneling event to nonequilibrium quasiparticles [91, 92] or to dielectric two-

level states (TLS) in the lossy bulk oxides of the JPM or in the surface oxides of the

qubit. Possible mitigation strategies to preserve measurement fidelity at repetition

rates approaching 1 MHz include incorporation of quasiparticle traps into the circuit
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[93, 94] or a modification of the JPM energy landscape to reduce the energy released

by the tunneling event.
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Figure 4.9: Dependence of JPM-based measurement fidelity on repetition rate. (a)
Timing sequence of the experiment to probe sensitivity to measurement repetition
rate. Each measurement takes 700 ns from start to finish, including resonator and
qubit reset. (b) JPM-detection of the qubit |0〉 and |1〉 states versus interval between
measurements. (c) As in (b), but with the qubit |0〉 state mapped to the bright pointer
(i.e. ωd = ωr,|0〉). Parts (b) and (c) indicate a degradation in both JPM detection
efficiency and qubit T1 as the repetition rate is increased, with the former playing the
dominant role.

4.6 Conclusion

We have developed and characterized a fast, accurate state measurement technique for

superconducting qubits using on-chip microwave photon counters. Our technique pro-
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vides access to the binary result of projective quantum measurement at the millikelvin

stage of a dilution refrigerator; furthermore, it eliminates the need for nonreciprocal

circuit components between the qubit and the measurement apparatus [39]. While our

achieved raw single-shot measurement fidelity > 98% already compares favorably with

the current state of the art [95], straightforward improvements in pointer state prepa-

ration and suppression of qubit relaxation and initialization errors should push raw

single-shot measurement fidelity beyond 99%. Our study of achievable measurement

repetition rate revealed an anomalous source of loss associated with JPM tunneling

events; this topic merits further investigation. We anticipate that straightforward mod-

ifications to our circuit design will provide a path to higher measurement repetition

rates.

The physical footprint of the JPM is well matched to the dimensions of the qubit, so

that it would be straightforward to integrate a single JPM element with every qubit in

a large-scale multiqubit processor; in such an architecture, each cell in the array would

require one additional flux bias line for JPM control. Microwave-based readout of the

classical flux state of the JPM is amenable to multiplexing for the efficient measurement

of large multiqubit arrays with low hardware overhead; alternatively, it is possible to

encode the flux state of the JPM in a propagating fluxon [66, 67, 96] that could then be

passed to a proximal classical Josephson digital circuit for error monitoring of the qubit

array, postprocessing of the measurement results, and low-latency feedback. Combined
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with digital approaches to coherent control [97, 98], this approach to measurement

could form the basis for a scalable quantum–classical interface for next-generation

superconducting qubit arrays [68].
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Appendix A

Mathematical Derivations

A.1 Introducing Branch Variables

In this section, we introduce the concepts needed to quantize simple electrical circuits.

Following Vool and Devoret [25, 26], we begin with definitions of the branch flux

Φb(t) =

∫ t

−∞
Vb(t′)dt′ (A.1)

and branch charge

Qb(t) =

∫ t

−∞
Ib(t′)dt′, (A.2)

where

Vb(t) =

∫ end of b

start of b

~E(~r, t) · d~l (A.3)
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is the voltage drop across a branch element and

Ib(t) =
1

µ0

∮
~B(~r, t) · d~l (A.4)

is the current flowing through it as shown in Fig. A.1. We note that the line integral

in Eq. (A.4) is taken along a close curve in ‘vacuum’ encircling the element. Here,

by a branch we mean a two-port electrical component (e.g., a capacitor, inductor, or

Josephson junction). The total energy absorbed by the element is given by

Eb(t) =

∫ t

−∞
Ib(t′)Vb(t′)dt′, (A.5)

where Ib(t)Vb(t) is the instantaneous electrical power absorbed by the component. We

assume that at t = −∞, the circuit was at rest (i.e., all currents and voltages in the

system were zero). Throughout this text, we will identify Φb with the ‘position’ coor-

dinate and Φ̇b with the ‘velocity’ coordinate. Then, to construct a circuit Lagrangian

(typically denoted by L), we simply subtract the kinetic (capacitive) and potential

(inductive) energy terms such that the Euler-Lagrange equation(s) for the system

d

dt

∂L
∂Φ̇b

=
∂L
∂Φb

recover the equation(s) of motion that one would arrive at using classical circuit theory.

In Table A.1, we list the energies stored in the three most basic circuit components in

terms of the branch flux Φb and its first time derivative Φ̇b. Notice that we have added

in offset terms to the capacitive and inductive energies, which are typically assumed to

have both intrinsic and extrinsic contributions. We refer the interested reader to Refs.
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Figure A.1: Sign convention for the voltage Vb(t) and current Ib(t) associated with an
arbitrary branch element b of an electrical circuit. Reproduced (with modifications)
from Ref. [26].

[25, 26, 99] for further detail.

Table A.1: Energy stored in non-dissipative circuit elements.

Element Energy Type

linear capacitance C C(Φ̇b − Voffset)
2/2 ‘kinetic’

linear inductance L (Φb − Φoffset)
2/2L ‘potential’

Josephson junction EJ = I0Φ0/2π EJ(1− cos(2πΦb/Φ0)) ‘potential’

A.2 Hamiltonian for a Driven LC Circuit

Consider the circuit depicted in Fig. 2.1(b). By current conservation, we have that

Cd(V̇d(t)− Φ̈)︸ ︷︷ ︸
current through Cd

= CrΦ̈︸︷︷︸
current through Cr

+ Φ/Lr︸ ︷︷ ︸
current through Lr

(A.6)
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when written in terms of the flux1 Φ [see Eq. (A.1)]. By inspection, the Lagrangian

that reproduces this equation of motion is

L =
1

2
CrΦ̇

2 +
1

2
Cd(Φ̇− Vd(t))2 − Φ2

2Lr
. (A.7)

One can verify this using the Euler-Lagrange equation [Eq. (2.3)]. To derive the

Hamiltonian for this system, we first express Φ̇ in terms of the canonical momentum2

Q ≡ ∂L
∂Φ̇

= (Cd + Cr)Φ̇− CdVd(t). (A.8)

From here, we find that

Φ̇ =
Q+ CdVd(t)

CΣ

, (A.9)

where CΣ ≡ Cd + Cr. Then, from the definition of the Hamiltonian, one finds that

H = Φ̇Q− L

=
Q2

CΣ

+
Cd
CΣ

QVd(t)−

(
1

2CΣ

[
Q2 + 2CdQVd(t) +���

��C2
dVd(t)2

]

− Cd
CΣ

QVd(t)−
��

��
�C2

d

CΣ

Vd(t)2 +
�
��

��Cd
2
Vd(t)2 − Φ2

2Lr

)

=
Q2

2CΣ

+
Φ2

2Lr
+
Cd
CΣ

QVd(t).

(A.10)

Note that all terms independent of both Q and Φ have been omitted in the final

expression for H. At this point, Q and Φ are promoted to operators satisfying the

canonical commutation relationship [Φ̂, Q̂] = i~, and the circuit is said to have been

quantized.

1We assume that both branches of this circuit are connected by an ideal wire (i.e., with no capac-
itance or inductance), and furthermore that there are no external fields (magnetic or electric) near
these two components. Under these conditions, the branch flux across the capacitor and inductor are
equal, which we refer to simply as the flux.

2Often referred to as the node charge or simply as the charge.
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A.3 Hamiltonian for a Transmon

Consider the circuit depicted in Fig. 2.2(a). By current conservation, we have that

Cxy(V̇d(t)− Φ̈)︸ ︷︷ ︸
current through Cxy

= CqΦ̈︸︷︷︸
current through Cq

+ I0q sin(2πΦ/Φ0)︸ ︷︷ ︸
current through JJ

. (A.11)

This looks like a driven harmonic oscillator in the 2πΦ/Φ0 � 1 limit [see Eq. (A.6)].

By inspection, the Lagrangian that reproduces this equation of motion is

L =
1

2
CqΦ̇

2 +
1

2
Cxy(Φ̇− Vd(t))2 + EJ(cos(2πΦ/Φ0)− 1), (A.12)

where EJ = I0qΦ0/(2π) [see Eq. (2.19)]. From the canonical momentum

Q =
∂L
∂Φ̇

= (Cxy + Cq)Φ̇− CxyVd(t), (A.13)

we find that

Φ̇ =
Q+ CxyVd(t)

CΣ

, (A.14)

where CΣ ≡ Cxy + Cq. Therefore, the Hamiltonian for this circuit can be written as

H = Φ̇Q− L

=
Q2

CΣ

+
Cxy

CΣ

QVd(t)−

(
1

2CΣ

[
Q2 + 2CxyQVd(t) +���

��C2
xyVd(t)

2

]

− Cxy

CΣ

QVd(t)−
��

��
��C2

xy

CΣ

Vd(t)
2 +
��

��
��Cxy

2
Vd(t)

2 + EJ(cos(2πΦ/Φ0)− 1)

)

=
Q2

2CΣ

− EJ(cos(2πΦ/Φ0)− 1) +
Cxy

CΣ

QVd(t).

(A.15)

We can express this equation in a more familiar form [27] by introducing the phase

operator [see Eq. (2.20)]

δ̂ = 2πΦ̂/Φ0,
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Cooper pair number operator

n̂ = −Q̂/2e,

and offset charge

ng = +CxyVd/2e.

Using these definitions, Eq. (A.15) can be written as3

H = 4EC(n̂− ng)2 − EJ cos(δ̂) +��EJ −��
��4ECn

2
g. (A.16)

Typically, the offset charge is assumed to have contributions from both the drive

source and the environment. In a well-designed system, the charge noise due to the

drive source can largely be ignored. However, the environmental contribution can lead

to enhanced dephasing (depending on the EJ/EC ratio), relaxation, and excitation.

A.4 From Q̂ and Φ̂ to Pauli Matrices

As discussed in Section 2.3, the transmon is a weakly anharmonic oscillator with eigen-

states that closely resemble those of the harmonic oscillator. This leads to a major

simplification when analyzing the transmon, as we can approximate this system as

a harmonic oscillator during calculations, while still gaining valuable intuition about

the circuit’s behavior. We explore this concept below to demonstrate how the ‘har-

monic transmon’ can be mapped onto a nearly equivalent Pauli matrix representation.

3From the definitions of n̂ and δ̂, the canonical commutation relation can be written in dimension-
less form as [n̂, δ̂] = +i.
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Throughout this discussion, we will highlight situations where these approximations

lead to problems.

By approximating the transmon as a harmonic oscillator4 and truncating the eigen-

basis to the first two energy levels, one can show that the following mappings can be

made:

� â→ σ̂−

� â† → σ̂+

� â+ â† → σ̂x

� i(â† − â)→ σ̂x

� 1− 2â†â→ σ̂z

Here, σ̂x, σ̂y, and σ̂z denote the usual Pauli matrices5, σ̂+ ≡ |1p〉〈0p| and σ̂− ≡ |0p〉〈1p|

are the Pauli raising and lower operators, and â† and â are the creation and annhilation

operators of harmonic oscillator excitations. To show this, we denote the basis states

of the harmonic oscillator (Pauli-z matrix) using the subscript h (p) in the calculation

below:

� â|0h〉 = 0 ↔ σ̂−|0p〉 = |0p〉�����:
0〈1p|0p〉 = 0

� â|1h〉 =
√

1|0h〉 ↔ σ̂−|1p〉 = |0p〉
4The harmonic approximation means that Ĥ0 ≈ ~ω0(â†â+ 1/2) and Q̂ ≈ Qzpf × j(â† − â), where

ω0 =
√

8EJEC/~ and Qzpf =
√
~ω0Cq/2 [see Eq. (2.11)].

5With eigenstate convention σ̂z|0p〉 = +|0p〉 and σ̂z|1p〉 = −|1p〉.
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� â†|0h〉 =
√

1|1h〉 ↔ σ̂+|0p〉 = |1p〉

� â†|1h〉 =���
��: 0√

2|2h〉 = 0 ↔ σ̂+|1p〉 = |1p〉�����:
0〈0p|1p〉 = 0

� (â+ â†)(|0h〉+ |1h〉) = +(|0h〉+ |1h〉) +���
��: 0√

2|2h〉 ↔ σ̂x|x+〉 = +|x+〉

� (â+ â†)(|0h〉 − |1h〉) = −(|0h〉 − |1h〉)−���
��: 0√

2|2h〉 ↔ σ̂x|x−〉 = −|x−〉

� i(â† − â)(|0h〉+ i|1h〉) = +(|0h〉+ i|1h〉)−���
��: 0√

2|2h〉 ↔ σ̂y|y+〉 = +|y+〉

� i(â† − â)(|0h〉 − i|1h〉) = −(|0h〉 − i|1h〉) +���
��: 0√

2|2h〉 ↔ σ̂y|y−〉 = −|y−〉

� (1− 2â†â)|0h〉 = +|0h〉 ↔ σ̂z|0p〉 = +|0p〉

� (1− 2â†â)|1h〉 = −|1h〉 ↔ σ̂z|1p〉 = −|1p〉.

Here, |x±〉 = (|0p〉 ± |1p〉)/
√

2 and |y±〉 = (|0p〉 ± i|1p〉)/
√

2. Notice that we have

artificially set all terms ∝ |2h〉 = 0. Clearly, this cannot hold if Fourier components of

the drive signal are resonant with the |1〉 → |2〉 transition; however, this is often a good

approximation provided that the Rabi frequency induced by the drive signal is much

smaller than the transmon’s nonlinearity. As these quantities become comparable,

additional pulse shaping techniques are required to avoid leakage and phase errors

caused by the weakly off-resonant |2〉 state [79, 81]. We refer the interested reader to

Zijun Chen’s PhD thesis for further detail [37].

From the mappings above and Eq. (A.15), we have that

Ĥ '
(
− ~ω0

2

)
σ̂z +

(
Cxy

CΣ

Vd(t)Qzpf

)
σ̂y +��

�~ωq1̂.
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We note that the frequency term ω0 in front of the σ̂z operator from this Hamiltonian

should be replaced by ωq = (ω0 − EC/~) to obtain a more accurate approximation of

the qubit frequency (see Section 2.3), in other words

Ĥ =

(
− ~ω0 − EC

2

)
σ̂z︸ ︷︷ ︸

=Ĥ0

+

(
Cxy

CΣ

Vd(t)Qzpf

)
σ̂y︸ ︷︷ ︸

=Ĥd(t)

. (A.17)

In addition, we note that the prefactor in front of the σ̂x operator was estimated

using the harmonic oscillator wavefunctions, and therefore differs slightly from the

expression obtained using the transmon’s wavefunctions [see Fig. 2.2(c)]. At any rate,

this expression captures the correct leading order dependencies, and provides us with

a compact set of design rules for building driven transmon systems.

A.5 Resonant Drives and the RWA

In this section, we study the action of the drive term Ĥd(t) from Eq. (A.17) by assuming

that

Vd(t) = |Vd| ·X(t)× sin(ωdt+ φd), (A.18)

where |Vd| is the drive amplitude, ωd is the drive frequency, φd is the drive phase,

and X(t) is a time-dependent window function. Let us begin by introducing the time

evolution operator

Û = exp(−iĤ0t/~) = exp(+i
ωq
2
tσ̂z). (A.19)
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Then, in the interaction picture, the drive term is altered by the unitary transformation

ĤI(t) = Û †Ĥd(t)Û = ~ΩRX(t)Û †σ̂yÛ , (A.20)

where

ΩR = Qzpf|Vd|
Cxy

CΣ

/~ (A.21)

is the angular ‘Rabi frequency’. There are multiple ways to calculate the Û †σ̂yÛ term.

The laborius method relies on the Baker-Campbell-Hausdorf relations. The first few

terms in the expansion are given below for completeness:

Û †σ̂yÛ = σ̂y +
(−iωqt/2)

1!
[σ̂z, σ̂y]︸ ︷︷ ︸
=−2iσ̂x

+
(−iωqt/2)2

2!
[σ̂z, [σ̂z, σ̂y]]︸ ︷︷ ︸

=4σ̂y

+ · · ·

= σ̂y cos(ωqt)− σ̂x sin(ωqt). (A.22)

Note that each commutator generates a factor of two in a manner that cancels out

the powers of 1/2 generated by the (−iωqt/2)n terms, thus reproducing the expansions

of cos(ωqt) and − sin(ωqt) . Alternatively, we can think about the physics of the

transformation we are making – in other words, what do the Pauli operators in the lab

frame look like from the standpoint of an observer that rotates about the z-axis at an

angular frequency −ωq? We know that after a quarter period in the rotating frame,

the σ̂y operator of the lab frame will align with −σ̂x of the rotating frame6. Similar

arguments can be made at 1/2 and 3/4 of a period until the trend is obvious (see Fig.

6Recall that our qubit Hamiltonian is ∝ −σ̂z and not +σ̂z, hence the rotation about the minus
z−axis.
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Figure A.2: Visual representation of the frame transformation from Eq. (A.22). Here,
the coordinates x, y, and z denote the lab frame and the coordinates x′, y′, and z′

denote the frame rotating about the z = z′ axis at the angular frequency −ωq.

A.2).

Substituting Eq. (A.22) into Eq. (A.20), one finds that

ĤI(t) = ~ΩRX(t) sin(ωdt+ φd)×
[
σ̂y cos(ωqt)− σ̂x sin(ωqt)

]
=

~ΩRX(t)

2

[
σ̂y
2i
×
[

exp

(
i(δωd + φd)

)
− exp

(
− i(δωd + φd)

)
+ exp

(
i(δωΣ + φd)

)
− exp

(
− i(δωΣ + φd)

)]
− σ̂x

2
×
[

exp

(
i(δωd + φd)

)
+ exp

(
− i(δωd + φd)

)
− exp

(
i(δωΣ + φd)

)
− exp

(
− i(δωΣ + φd)

)]]

= ~ΩRX(t)×
[
σ̂y
2

(
sin(δωdt+ φd) +((((

((((sin(ωΣt+ φd)

)
− σ̂x

2

(
cos(δωdt+ φd)−(((((

(((cos(ωΣt+ φd)

)]
,

(A.23)

where δωd ≡ ωd−ωq, and ωΣ ≡ ωd+ωq. Note that one-half of the signal is thrown away

as counter-rotating terms; however, their participation in the dynamical description of
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the system is negligible7. Taking δωd = 0 yields the drive term

ĤI(t)/~ ' ΩRX(t)×
(
σ̂y
2

sin(φd)−
σ̂x
2

cos(φd)

)
. (A.24)

From Eq. (A.24), it is clear how X- and Y -gates are achieved experimentally using

microwave signals: for an X-gate (Y -gate) set φd = π (φd = π/2) until the accumulated

rotation angle equals π. We refer the interested reader to Daniel Sank’s PhD thesis for

further detail [100].

Now consider an alternative drive signal of the form

V ′d(t) = |Vd| ×
(
Y (t) cos(ωqt)−X(t) sin(ωqt)

)
. (A.25)

The −X(t) sin(ωqt) term follows from Eq. (A.24) by setting φd = π. Similarly,

the Y (t) cos(ωqt) term also follows from Eq. (A.24) by setting φd = π/2 and letting

X(t)→ Y (t). Combining these results, one finds that

ĤI(t)/~ ' ΩR ×

(
Y (t)

σ̂y
2

+X(t)
σ̂x
2

)
. (A.26)

This is the control Hamiltonian needed for implementing Derivative Removal by Adi-

abatic Gate (DRAG) [79, 80]. Using DRAG, the window functions X(t) and Y (t) are

related by

Y (t) = −αẊ(t)

η
(A.27)

where α ∈ (0, 1.5) is a dimensionless prefactor and η is the anharmonicity [Eq. (2.24)].

7This is the so-called rotating wave approximation (RWA).
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A.6 Dispersive Measurement Systems

Consider the coupled transmon-resonator system depicted in Fig. 2.4. By current

conservation, we have that

Cg(Φ̈q − Φ̈r)︸ ︷︷ ︸
current through Cg

= CrΦ̈r︸ ︷︷ ︸
current through Cr

+ Φr/Lr︸ ︷︷ ︸
current through Lr

for the currents in the resonator, and

Cg(Φ̈r − Φ̈q)︸ ︷︷ ︸
current through Cg

= CqΦ̈q︸ ︷︷ ︸
current through Cq

+ I0q sin(2πΦq/Φ0)︸ ︷︷ ︸
current through JJ

for the currents in the transmon. The Lagrangian that reproduces these equations of

motion is

L =
1

2
CrΦ̇

2
r +

1

2
CqΦ̇

2
q +

1

2
Cg(Φ̇r − Φ̇q)

2

− Φ2
r

2Lr
+ EJ(cos(2πΦq/Φ0)− 1),

(A.28)

where EJ = I0qΦ0/2π. Rewriting the kinetic portion of this Lagrangian as

T =
1

2
(Cr + Cg)Φ̇

2
r +

1

2
(Cq + Cg)Φ̇

2
q − CgΦ̇rΦ̇q,

one finds that

T =
1

2

[
Φ̇r Φ̇q

](Cr + Cg) −Cg

−Cg (Cq + Cg)


︸ ︷︷ ︸

C

Φ̇r

Φ̇q



=
1

2
Φ̇TCΦ̇ (A.29)
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when written in matrix form. From the definition of conjugate momentum, we find

that

Q =

∂L/∂Φ̇r

∂L/∂Φ̇q



=

 (Cr + Cg)Φ̇r − CgΦ̇q

−CgΦ̇r + (Cq + Cg)Φ̇q



=

(Cr + Cg) −Cg

−Cg (Cq + Cg)


︸ ︷︷ ︸

=C

Φ̇r

Φ̇q



= CΦ̇. (A.30)

Interestingly, the expression for T and Q are related by the same capacitance matrix

C. Since C is invertible, Eq. (A.30) implies that Φ̇ = C−1Q, allowing us to express

Eq. (A.29) as

T =
1

2
Φ̇TQ (A.31)

=
1

2
(C−1Q)TC(C−1Q)

=
1

2
QTC−1Q. (A.32)
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In the last line of this expression, we have used the fact that (C−1)T = C−1, as C is

symmetric. Then, from Eqs. (A.31) and (A.32), the Hamiltonian for this system is

given by [19]

H = Φ̇TQ− L

= Φ̇TQ−
(

1

2
Φ̇TQ− Φ2

r

2Lr
+ EJ(cos(2πΦq/Φ0)− 1)

)
=

1

2
Φ̇TQ+

Φ2
r

2Lr
− EJ(cos(2πΦq/Φ0)− 1)

=
1

2
QTC−1Q︸ ︷︷ ︸

=T

+
Φ2
r

2Lr
− EJ(cos(2πΦq/Φ0)− 1). (A.33)

To make use of Eq. (A.33), we compute the expression for C−1 below

C−1 =
1

det(C)

(Cq + Cg) Cg

Cg (Cr + Cg)

 , (A.34)

where det(C) = (Cr +Cg)(Cq +Cg)−C2
g . Plugging Eq. (A.34) into Eq. (A.32) yields

the expression

T =
1

2

[
Qr Qq

]
1

det(C)

(Cq + Cg) Cg

Cg (Cr + Cg)


Qr

Qq


=

Q2
r

2C ′r
+

Q2
q

2C ′q
+
QrQq

C ′g
, (A.35)
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where

C ′r = Cr +
CqCg
Cq + Cg

(A.36)

C ′q = Cq +
CrCg
Cr + Cg

(A.37)

C ′g =
(Cr + Cg)(Cq + Cg)− C2

g

Cg
. (A.38)

The equation for C ′r (C ′q) is simply the capacitance of Cr (Cq) in parallel with the series

combination of Cg and Cq (Cr). Finally, by Eq. (A.35), the Hamiltonian is given by

H =
Q2
r

2C ′r
+

Φ2
r

2Lr︸ ︷︷ ︸
=Hr

+
Q2
q

2C ′q
− EJ(cos(2πΦq/Φ0)− 1)︸ ︷︷ ︸

=Hq

+
QrQq

C ′g︸ ︷︷ ︸
=Hg

. (A.39)

This looks like the Hamiltonian for a resonator (Hr), plus the Hamiltonian for a trans-

mon (Hq), along with a ‘small’ coupling term (Hg). As usual, we promote Φj and Qj

to operators satisfying the canonical commutation relation [Φ̂j, Q̂j] = i~ for j ∈ {r, q}.
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The coupling term from Eq. (A.39) can be written as8

Ĥg =
Q̂rQ̂q

C ′g

=
Qr,zpfQq,zpf

C ′g
i(â†r − âr)i(â†q − âq) (A.40)

= ~g(â†r − âr)(âq − â†q), (A.41)

where Qj,zpf =
√

~ωjC ′j/2 and ωj = 1/
√
C ′jLj (see Sections 2.1 and 2.3). Noting that

in practical cases C ′r ' Cr + Cg, C
′
q ' Cq + Cg, and C ′g ' (Cr + Cg)(Cq + Cg)/Cg, the

expression for g from Eq. (A.41) is

g '
√
ωrωq

2

Cg√
(Cr + Cg)(Cq + Cg)

. (A.42)

This is a fundamental design formula for dispersive measurement systems involving

transmons. Letting â†r → â†, âr → â, â†q → σ̂+, âq → σ̂−, and 1 − 2â†qâq → σ̂z (see

Appendix A.4), the coupling term can be written as

Ĥg = ~g(â† − â)(σ̂− − σ̂+), (A.43)

and therefore our Hamiltonian is of the form

Ĥ/~ = ωr(â
†â+

1

2
) + ωq(−

1

2
σ̂z + 1) + g(â† − â)(σ̂− − σ̂+). (A.44)

8This form of the coupling term assumes that we are treating the transmon as a harmonic oscillator
plus a small perturbation. This means that the matrix elements of the coupling term Ĥg should be
evaluated with respect to the perturbed eigenfunctions, rather than those of the harmonic oscillator
alone when dealing with the transmon’s states; however, to streamline our discussion, we will forgo
these corrections and refer the interested reader to the excellent PhD thesis by Mostafa Khezri for
further detail [38].
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Dropping all constants, we find that

Ĥ/~ = ωrâ
†â− ωq

2
σ̂z + g(â†σ̂− − â†σ̂+ − âσ̂− + âσ̂+) . (A.45)

This is the celebrated Jaynes-Cummings Hamiltonian.

To get Eq. (A.45) into a more useful form, we define the bare Hamiltonian

Ĥ0/~ = ωrâ
†â− ωq

2
σ̂z, (A.46)

with the corresponding time evolution operator

Û = exp(−iĤ0t/~). (A.47)

Then, in the interaction picture, Eq. (A.43) can be written as

ĤI(t) = Û †ĤgÛ . (A.48)

Using the Baker-Cambell-Hausdorff relation

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2
[Â, [Â, B̂]] + . . .

1

n!

nA′s︷ ︸︸ ︷
[Â, [Â, . . . [Â, B̂] . . .] + . . . , (A.49)

one finds that

Û †â†Û = â† + iωrt[â
†â, â†]− (ωrt)

2

2
[â†â, [â†â, â†]] + . . .

= â†e+iωrt (A.50)
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and

Û †âÛ = â+ iωrt[â
†â, â]− (ωrt)

2

2
[â†â, [â†â, â]] + . . .

= âe−iωrt. (A.51)

These equations follow from the fact that [â†â, â†] = â† and [â†â, â] = −â. The term

Û †σ̂yÛ was derived in Appendix A.5, with the result given below

Û †σ̂yÛ = σ̂y cos(ωqt)− σ̂x sin(ωqt).

Using similar methods, one can show that

Û †σ̂xÛ = σ̂x cos(ωqt) + σ̂y sin(ωqt).

Since σ̂− = (σ̂x + iσ̂y)/2 and σ̂+ = (σ̂x − iσ̂y)/2 under our convention9, we find that

Û †σ̂−Û = σ̂−e
−iωqt (A.52)

and

Û †σ̂+Û = σ̂+e
+iωqt. (A.53)

Combining Eqs. (A.50)-(A.53), the transformed coupling term can be written as

ĤI(t) = ~g(â†σ̂−e
−i∆t − â†σ̂+e

iΣt − âσ̂−e−iΣt + âσ̂+e
i∆t), (A.54)

where ∆ = ωq − ωr and Σ = ωq + ωr. To first order in Ĥg, time evolution in the

9Typically, one uses the convention σ̂± = (σ̂x ± iσ̂y)/2, where |g〉 = | ↑〉 and |e〉 = | ↓〉. In this
case, the ± refer to how the operator acts on the spin state.
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interaction picture is equivalent to the action of

ÛI(t) = 1− i

~

∫ t

0

dt′ĤI(t
′). (A.55)

Acting ÛI(t) on the bare states, one arrives at terms∝ 1/Σ and∝ 1/∆. Since |∆| � Σ,

the terms ∝ 1/Σ are much weaker; furthermore, they oscillate rapidly compared to the

exp(±i∆t) terms. Dropping the exp(±iΣt) terms and moving back into the lab frame

yields the coupling term

Ĥg ' ~g(â†σ̂− + âσ̂+). (A.56)

This means that under the RWA, the Jaynes-Cummings Hamiltonian from Eq. (A.45)

is given by

ĤRWA/~ = ωrâ
†â− ωq

2
σz + g(â†σ̂− + âσ̂+) . (A.57)

We note that ĤRWA preserves the total number of excitations in the system. This

means that only the states |n, e〉 and |n + 1, g〉 are coupled, thus greatly reducing the

number of nonzero matrix elements10. As we will demonstrate in the following section,

ĤRWA is an exactly solvable Hamiltonian.

10To avoid confusion between the joint transmon-resonator states, we will denote the resonator
states via |n〉 where n ∈ {0, 1, 2, . . .} and the qubit states via |g〉, |e〉, |f〉, . . ., where |g〉 is ground, |e〉
is the first excited state, |f〉 is the second excited state, and so on.
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A.6.1 Exact Solutions: the Eigenvalue Approach

To solve for the eigenvalues and eigenvectors of Eq. (A.57), we act this matrix on the

bare eigenstates of the system11, with the first few terms listed below:

ĤRWA

~
|0, g〉 = −ωq

2
|0, g〉

ĤRWA

~
|0, e〉 = +

ωq
2
|0, e〉

ĤRWA

~
|1, g〉 = (−ωq

2
+ ωr)|1, g〉+ g|0, e〉

ĤRWA

~
|1, e〉 = (

ωq
2

+ ωr)|1, e〉+
√

2g|2, g〉

ĤRWA

~
|2, g〉 = (−ωq

2
+ 2ωr)|2, g〉+

√
2g|1, e〉

ĤRWA

~
|2, e〉 = (

ωq
2

+ 2ωr)|2, g〉+
√

3g|3, g〉
...

To impose that 〈0, g|ĤRWA|0, g〉 = 0, we temporarily add 1̂×~ωq/2 to our Hamiltonian.

Then, in terms of the bare eigenstates, we find that ĤRWA is given by

ĤRWA/~ =



|0, g〉 |0, e〉 |1, g〉 |1, e〉 |2, g〉 · · ·
〈0, g| 0 0 0 0 0 . . .
〈0, e| 0 ωq g 0 0 . . .
〈1, g| 0 g ωr 0 0 . . .
〈1, e| 0 0 0 ωq + ωr

√
2g . . .

〈2, g| 0 0 0
√

2g 2ωr . . .
...

...
...

...
...

...
. . .


. (A.58)

11Here, by bare eigenstates we mean the joint eigenstates of the Hamiltonian Hr + Hq from Eq.
(A.39), by pretending that the coupling term Hg is not there. This is subtly different than setting
Cg = 0.
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In general, the nth block of this matrix is12

ĤRWA,n/~ =

( |n, e〉 |n+ 1, g〉
〈n, e| ωq + nωr

√
n+ 1g

〈n+ 1, g|
√
n+ 1g (n+ 1)ωr

)
. (A.59)

To simplify our analysis, we temporarily subtract 1̂ × (n + 1)~ωr from ĤRWA,n. In-

troducing the notation ∆ ≡ ωq − ωr and solving for the eigenvalues of the matrix

below

( |n, e〉 |n+ 1, g〉
〈n, e| ∆

√
n+ 1g

〈n+ 1, g|
√
n+ 1g 0

)
,

one finds that

λ± =
∆

2
±
√

∆2 + 4(n+ 1)g2

2
.

Adding (n+1)ωr and subtracting ωq/2 from this equation, we find that the eigenvalues

of ĤRWA,n are

En,±/~ = ωr(n+
1

2
)± |∆|

2

√
1 +

4(n+ 1)g2

∆2
. (A.60)

The corresponding eigenvectors are

|n,+〉 =
1√
N

 λ+

g
√
n+ 1



12We note that the nth block ĤRWA corresponds to a total of n + 1 excitations in the resonator
when the qubit is in state |g〉, or n excitations in the resonator when the qubit is in state |e〉.
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and

|n,−〉 =
1√
N

−g
√
n+ 1

λ+

 ,

where the normalization factor

N = λ2
+ + g2(n+ 1).

Alternatively, these eigenvectors can be written in terms of sine and cosine as

|n,+〉 = cos θn|n, e〉+ sin θn|n+ 1, g〉 (A.61)

and

|n,−〉 = cos θn|n+ 1, g〉 − sin θn|n, e〉, (A.62)

with

cos θn =
λ+√

λ2
+ + g2(n+ 1)
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and

sin θn =
g
√
n+ 1√

λ2
+ + g2(n+ 1)

.

Computing the ratio of sin θn and cos θn, we find that

tan θn =
g
√
n+ 1

λ+

,

where θn is often referred to as the ‘mixing angle’. Using the trigonometry from below

tan 2θn =
2 tan θn

1− tan2 θn

=
2λ+g

√
n+ 1

λ2
+ − (n+ 1)g2

=
2λ+g

√
n+ 1

∆2

2
+���

��g2(n+ 1)−����
�

g2(n+ 1) + ∆
2

√
∆2 + g2(n+ 1)

=
2λ+g

√
n+ 1

∆

(
∆

2
+

1

2

√
∆2 + g2(n+ 1)

)
︸ ︷︷ ︸

λ+

=
2g
√
n+ 1

∆
,

one finds that

θn =
1

2
arctan

(
2
√
n+ 1g

∆

)
. (A.63)
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We note that Eqs. (A.60)-(A.63) contain a ton of information about dispersive mea-

surement systems as discussed in the following section.

Asymptotics of the Exact Solutions in the Dispersive Limit

For ∆ > 0, we set |∆| = ωq − ωr and expand our expression for En,± [see Eq. (A.60)]

to first order in |g/∆| � 1. The result is that

En,±/~ =

{
(ωr + |χ|)n+ ωq/2 + |χ| for +

(ωr − |χ|)(n+ 1)− ωq/2 for −
, (A.64)

where |χ| ≡ g2/|∆|. This follows directly from the expansion:
√

1 + x ≈ 1 + x/2 for

x� 1. We note that this approximation breaks down when

4g2(n+ 1)

|∆|2
' 1,

in other words, at the critical photon number [41]

ncrit =
1

4

|∆|2

g2
. (A.65)

By expanding the eigenstates given by Eqs. (A.61) and (A.62) in the g � |∆| limit,

we find that the |n,+〉 state has the most weight in |n, e〉, while the |n,−〉 state has

the most weight in |n + 1, g〉. Intuitively, ∆ > 0 =⇒ ωq > ωr, therefore the higher

energy eigenstate should have the most weight in |n, e〉. One typically neglects the

small amount of state mixing between |n, e〉 and |n + 1, g〉, and directly associates

|n,+〉 with |n, e〉, and |n,−〉 with |n+ 1, g〉 when ωq > ωr and |g/∆| � 1.

For ∆ < 0, we set |∆| = ωr − ωq and expand our expression for En,± to first order
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in |g/∆| � 1. The result is that

En,±/~ =

{
(ωr + |χ|)(n+ 1)− ωq/2 for +

(ωr − |χ|)(n) + ωq/2− |χ| for −
, (A.66)

where again |χ| ≡ g2/|∆|. Similarly, we find that the |n,+〉 state has the most

weight in |n + 1, g〉, while the |n,−〉 state has the most weight in |n, e〉. Intuitively,

∆ < 0 =⇒ ωq < ωr, therefore the higher energy eigenstate should have the most

weight in |n + 1, g〉13. Again, one directly associates |n,+〉 with |n + 1, g〉, and |n,−〉

with |n, e〉 when ωr > ωq and |g/∆| � 1.

The results from Eqs. (A.64) and (A.66) are summarized graphically in Fig. A.3.

From Fig. A.3(b, d), with χ ≡ g2/∆ (now a signed quantity), our findings can be

viewed as the assignment

ωr →

{
ωr − χ for qubit in |g〉
ωr + χ for qubit in |e〉

, (A.67)

This qubit state dependent frequency shift of the resonator is the basis of dispersive

measurement system. Alternatively, these findings can be viewed as the assignment

ωq → ωq + χ(2n+ 1), (A.68)

in which the qubit frequency depends of the number of photons in the resonator. This

is the ac Stark effect [58, 59].

13Be careful when expanding Eq. (A.63) for small arguments with negative denominators. The
function returns π − arg rather than arg.
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Figure A.3: (a) Bare energy level structure for ∆ > 0. (b) Dressed energy level
structure for ∆ > 0. The dashed lines in this diagram correspond the bare energy
levels, while the solid lines correspond to the coupled (dressed) energy levels. (c) As
in (a), but with ∆ < 0. (d) As in (b), but with ∆ < 0.
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A.6.2 Approximate Solutions: the Schrieffer–Wolff transfor-

mation

Modern treatments of the Jaynes-Cummings Hamiltonian arrive at the eigenvalues from

Eqs. (A.64) and (A.66) using the Schrieffer-Wolff transformation [27, 41]. The basic

idea behind this transformation is to find a generator of rotation R̂ such that [Ĥ0, R̂] =

Ĥg [see Eqs. (A.46) and (A.56)]. Under these conditions, the unitary transformation

exp(R̂)ĤRWA exp(−R̂) will diagonalize ĤRWA to first order in the interaction term Ĥg

[by Eq. (A.49)]. Introducing the operators

T̂+ = σ̂+â+ σ̂+â
† (A.69)

and

T̂− = σ̂+â− σ̂+â
†, (A.70)

we find that the commutators

[T̂−, n̂] = [â, â†]σ̂+â+ σ̂−â
†[â, â†]

= T̂+ (A.71)
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and

[T̂−, σ̂z] = [σ̂+, σ̂z]â+ [σ̂z, σ̂−]â†

= 2(σ̂+â+ σ̂−â
†)

= 2T̂+. (A.72)

Noting that Ĥg ∝ T̂+, we have identified the desired generator of rotation up to a

prefactor, which happens to be g/∆ (i.e. R̂ = (g/∆)× T̂−). In addition, the following

identity will prove useful in the calculation below

[T̂−, T̂+] = 2(σ̂+σ̂−ââ
† − σ̂−σ̂+â

†â)

= 2(σ̂+σ̂− − σ̂zn̂). (A.73)

The last line follows from the fact that ââ† = 1 + â†â.

Then, by Eq. (A.49), to first order in g/∆ we find that the unitary transformation
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is given by

H̃RWA ≡ exp

(
g

∆
T̂−

)
ĤRWA exp

(
− g

∆
T̂−

)
' ĤRWA +

g

∆
[T̂−, ĤRWA] +

g2

2∆2
[T̂−, [T̂−, ĤRWA]]

= Ĥr + Ĥq + ~gT̂+ +
~g
∆

(
−∆T̂+ + 2g(σ̂+σ̂− − σ̂zn̂)

)
+

~g2

2∆2
(−∆[T̂−, T̂+]) +O

((
g

∆

)2)
= Ĥr + Ĥq +

~g2

∆
(σ̂+σ̂− − σ̂zn̂). (A.74)

Subtracting the constant

1

2

~g2

∆
(|e〉〈e|+ |g〉〈g|) (A.75)

from Eq. (A.74), we have that

H̃RWA/~ = ωrâ
†â− ωq

2
σ̂z −

σ̂z
2

(2χn̂+ χ) (A.76)

= ωrâ
†â− σ̂z

2

(
ωq + 2χ(n̂+

1

2
)

)
︸ ︷︷ ︸
ac Stark shift + Lamb Shift

= (ωr − χσ̂z)â†â︸ ︷︷ ︸
dispersive resonator shift

− σ̂z
2

(ωq + χ)︸ ︷︷ ︸
qubit + Lamb shift

,

where

χ =
g2

∆
. (A.77)
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This is the Jaynes-Cummings Hamiltonian in the dispersive approximation. No-

tice that H̃RWA is diagonal to first order in g/∆, and that the action of the unitary

exp(gT̂−/∆) on the dressed eigenstates from Eqs. (A.61) and (A.62) removes the state

‘mixing’ caused by the interaction to first order in g/∆.



114



115

Appendix B

Supplementary Materials for JPM

Experiment I

B.1 JPM Theory

A circuit schematic for the JPM is shown in Fig. B.1(a). The JPM is based on the

design of the capacitively-shunted flux-biased phase qubit [56]. Fig. B.1(b) shows a

scanning electron microscopy (SEM) micrograph of the circuit with labels indicating

components. The circuit Hamiltonian is given by

H(δ,Q) =
Q2

2Cs

− EJ cos δ +
1

2Lg

(
Φ0

2π

)2(
δ − 2πΦext

Φ0

)2

, (B.1)

where Q is the capacitor charge, Cs is the shunt capacitance (red), δ is the phase

difference across the Josephson junction, Φ0 ≡ h/2e is the magnetic flux quantum, I0 is
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the critical current of the Josephson junction (orange), EJ = I0Φ0/2π is the Josephson

energy, and Lg is the gradiometric loop inductance (blue). The capacitance of the

Josephson junction is negligible compared to Cs. The external flux Φext is generated by

an on-chip control line (green) which is coupled to the JPM with a mutual inductance

M . The extrema of the potential energy landscape are determined by the equation

sin δ =
1

βL

(
2πΦext

Φ0

− δ
)
, (B.2)

where

βL =
2πLgI0

Φ0

. (B.3)

Eq. (B.2) is a straightforward statement of current conservation in the JPM loop;

solutions can be depicted graphically as shown in Fig. B.1(c). We seek values βL

which allow the JPM to be tuned between a single- and double-well regime for reset

and photodetection, respectively. The curvature at the local minima of the potential

determines the plasma frequency:

ωp =
2π

Φ0

[
1

Cs

∂2U

∂δ2

]1/2

. (B.4)

In addition, we can estimate the number of levels in a well by n ≈ ∆U/~ωp, where

∆U is the potential energy barrier height.
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B.2 JPM Fabrication

The JPM is fabricated on a high-resitivity Si substrate. Prior to deposition, the wafer is

dipped in HF acid to remove native oxide from the surface. Next, we quickly transfer

(∼ 1 min) the device into a high vacuum (HV) sputter tool to deposit a 100 nm-

thick film of Al. The first patterning step defines all Al features except for the wiring

crossovers, Josephson junction, and shunt capacitor [see Fig. B.1(b)]. The pattern

is wet-etched using Transene Aluminum Etchant Type A. After this, a 130 nm-thick

film of amorphous SiO2 is deposited using plasma-enhanced chemical vapor deposition

(PECVD). Next, we define a 1 µm2 via in the dielectric which determines the location

of our Josephson junction. Josephson junctions are formed in the sputter tool using

the following steps: i) in situ ion mill to remove native oxide, ii) controlled oxidation

in pure O2 at room temperature (PO2 ∼ 10 mTorr), and iii) deposition of the Al

counterelectrode (∼150 nm thick). The counterelectrode layer is then patterned and

etched using the same Al etching procedure as before. Next, we pattern for dielectric

removal using a reactive-ion etcher (RIE). Dielectric is cleared throughout except where

needed for wiring insulation. A final Al wiring step is completed using liftoff and e-

beam evaporation in a separate HV system. Once again an in situ ion mill is used

to ensure good metal-to-metal contact, a 5 nm layer of Ti is evaporated to promote

adhesion, then a 150 nm-thick film of Al is evaporated and the metal is lifted off. This

completes the device. Circuit parameters for the JPM chip are listed in Table B.1 with
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component labels indicated in Fig. B.2(a).

B.3 Qubit Fabrication

The transmon qubit and readout cavity are fabricated on a high-resistivity Si substrate.

A 90-nm Nb film is deposited using a dc sputter system. A single photolithography step

defines all features, except for the Josephson junctions. This pattern is etched using a

reactive-ion etcher. The Dolan-bridge qubit junctions are defined in an MMA/PMMA

bilayer exposed on an electron-beam writer. The junctions are deposited in the fol-

lowing steps: i) in situ Ar ion mill to remove native oxide from underlying Nb, ii)

electron-beam evaporation of 35 nm of Al at +11.5 degrees, iii) controlled oxidation,

and iv) 65 nm Al deposition at -11.5 degrees. Circuit parameters for the qubit chip

are listed in Table B.2 with component labels indicated in Fig. B.2(b).

B.4 Experimental Setup

The setup for our experiment is shown in Fig. B.3. The qubit control, qubit cavity, and

JPM readout waveforms are generated through sideband mixing of shaped intermediate

frequency (IF) and local oscillator (LO) tones; 1 GS/s arbitrary waveform generators

(AWGs) are used to generate the IF waveforms. These IF waveforms are sent to the

in-phase (I) and quadrature (Q) ports of an IQ mixer and are mixed with an LO to
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generate pulses at microwave frequencies at the RF port. The qubit flux bias is fixed

at a constant dc value throughout the measurement sequence. The JPM flux bias is

composed of two signals which are combined at the millikelvin stage using a microwave

bias tee that is dc coupled to both of its ports. The output of the qubit cavity is

connected to the input of the JPM capture cavity via a coaxial transmission line with

no intervening isolators or circulators. The state of the JPM is read out in reflection

using a directional coupler, an isolator, and a high mobility electron transistor (HEMT)

amplifier at the 3 K stage of the cryostat. The JPM readout signal is sent to the RF

port of an IQ mixer where it is down-converted using the shared LO with the JPM

readout AWG. Baseband I and Q signals are digitized using a 500 MS/s analog-to-

digital converter (ADC). Further signal demodulation and thresholding are performed

in software in order to extract the oscillation state of the JPM. In Fig. B.4(a) we show

our ability to distinguish between distinct oscillation states in IQ space. The JPM

state can be determined with > 99.9% accuracy in under 500 ns [see Fig. B.4(b)].

B.5 Pointer State Transfer

Prior work has shown the efficient absorption of coherent states by a microwave res-

onator coupled to a mediating transmission line [57]. These experiments relied on a

tunable coupling scheme to ensure destructive interference between the incoming and

outgoing microwaves, as well as the ability to control the temporal profile of the in-
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Table B.1: JPM Circuit Parameters
Label Description Value Method of Determination
C2 Capture cavity input

coupling capacitor
12 fF Finite element simulations

ω2/2π Fundamental frequency of
the half-wave coplanar

waveguide resonator (with
JPM far detuned at 5.9

GHz)

5.03
GHz

Cavity spectroscopy

L2 Approximate length of the
capture cavity

12 mm Defined lithographically

Clumped Equivalent lumped element
capacitance of the capture

cavity

1 pF Analytical expressions

Llumped Equivalent lumped element
inductance of the capture

cavity

1.1 nH Analytical expressions

QT Total quality factor of the
capture cavity at the 5.020
GHz operating point where

photon capture occurs.
Quality factor is dominated
by intrinsic damping of the
SiOx dielectric used in the

JPM

1,300 Cavity spectroscopy

g2/2π JPM-cavity coupling
strength

44 MHz Swap spectroscopy between
the JPM and capture

cavity
Cs JPM shunt capacitor 3.3 pF JPM spectroscopy
I0 Critical current 1.2 µA JPM spectroscopy and

4-wire resistance
measurements of

co-fabricated test junctions
Lg Gradiometric loop

inductance
1.2 nH JPM spectroscopy

Cr JPM readout capacitor,
used to perform microwave

reflectometry

52 fF Finite element simulations
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coming signal, in order to achieve transfer efficiencies approaching 100%. In our setup,

photon transfer between the qubit and capture cavities is more complicated. Without

an intervening isolator or circulator to damp unwanted reflections, the finite length L0

of the transmission line admits a standing wave structure with an approximate mode

spacing of vp/2L0 ≈ 0.75 GHz, where vp is the phase velocity of propagation in the

cable (see Table B.3 for transmission line parameters). In fact, to avoid these issues

our initial experiments included an isolator between the qubit and capture cavities, but

reached a maximum single-shot measurement fidelity of only ∼ 50%. We attributed

this subpar performance to inline losses and impedance mismatches between samples.

To improve our measurement fidelity, our later experiments (described in this report)

eliminated the isolator in favor of a single piece of coax with length L0 chosen to avoid

destructive interference in the vicinity of ω1 and ω2. It should be noted that when

using this approach to transfer energy between cavities, the achievable photon transfer

efficiencies depend strongly on L0. Using the quite universal circuit simulator (Qucs),

we performed a transient analysis based on a simplified version of our experimental

setup using the parameters listed in Tables B.1-B.3. In this model, we represented the

qubit and capture cavities by their equivalent lumped element representations (valid

only near resonance) [14] and analyzed the response of resonator node voltages to an

applied resonant drive via 50 Ω source coupled to capacitor C0 [Fig. B.2(b)] allowing

L0 to vary. In our model we represent the coupling losses at both transitions (onto and
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off of the two chips) as effective 0.25 dB attenuators. We find that transfer efficien-

cies ∼ 25% are possible for our experimental value of L0, however, by varying L0 one

can significantly degrade photon transfer efficiency. In Appendix B.8, we describe an

alternate method of estimating the photon transfer efficiency based on the calibrated

qubit cavity photon occupation of the bright pointer state and an analysis of the JPM

tunneling process following photodetection.

B.6 Window Functions for Pointer State Prepara-

tion

Window functions are typically used for pulse shaping qubit drive waveforms in order

to suppress spectral content at the 1-2 transition frequency. Since JPM-based qubit

state measurement relies on intensity contrast between bright and dark cavity pointer

states, windowing functions on the qubit cavity drive were used to suppress microwave

energy at the dark pointer state frequency. The Hamming window function was used

for cavity pointer state preparation in our experiment. The duration of our cavity

pointer state preparation pulse was 780 ns.
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B.7 Theoretical Detection Efficiency

Here we provide a theoretical estimate for the achievable efficiency of the JPM to

detect microwave cavity pointer states. We consider the difference in JPM switching

probability for the bright pointer state with respect to an ideal dark pointer (qubit

cavity at vaccum). The modeling takes into account tunneling of JPM levels between

wells and strong relaxation within the shallow left well. Following pointer state transfer,

the JPM is tuned into resonance with the capture cavity to probe for photons. At this

bias point, the JPM acts as a weakly anharmonic oscillator with an anharmonicity of

−10 MHz [Fig. B.5(a)] and an intrinsic relaxation rate of ∼ 108 s−1. We therefore

assume that following photodetection, the JPM levels are populated by a coherent

state with mean photon number n̄J [see Fig. B.5(b)]. Next, the JPM is biased close to

the critical flux Φc, defined as the bias at which the shallow left well no longer exists.

In the neighborhood of this bias, JPM excited states tunnel with high probability [see

Fig. B.5(c)]. Using the WKB approximation, we compute the tunneling rate Γn of the

nth level by

Γn =
ω0

2π
fn exp(−Sn/~). (B.5)

Here

Sn =

∫ δ2

δ1

√
2m|En − U(δ)| dδ (B.6)
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is the effective action evaluated at the classical turning points δ1 and δ2 at energy

En = (n + 1/2)~ω0, where ω0 is the plasma frequency given by Eq. (B.4) and m =

Cs(Φ0/2π)2 is the effective mass of the JPM phase particle [Fig. B.1(a)]. The numerical

factor fn is given by

fn =

√
2π

n!

(
n+ 1

2

e

)n+ 1
2

(B.7)

and provides a small correction due to the anharmonicity [101, 102]. In Fig. B.5(d)

we plot tunneling rates for the first four levels of the JPM as a function of Φext/Φc. We

numerically simulate the population dynamics of the JPM levels under the influence of

an applied flux pulse designed to promote tunneling of excited states from the shallow

minimum to the global minimum. From the JPM quality factor Q ∼ 300, we estimate

the first excited state lifetime T1,JPM to be roughly 20 ns near Φc. Using Fermi’s

golden rule and the harmonic approximation, we assume that the energy relaxation

time of the nth excited state is given by T1,JPM/n. We consider pulse waveforms with

Gaussian rise times of 2 ns and plateau widths of 8 ns; we find that the results are

only weakly dependent on the details of the flux pulse waveform. We discretize the

time interval of the pulse in steps dt � 2 ns; during each time step, we allow the

population of the various levels to tunnel with rates calculated using Eq. (B.5). We

then redistribute remaining population among the levels in the shallow well according

to the relaxation rates of the JPM (assumed to be independent of bias flux). We can

then determine switching probability P (n̄J ; Φext) for various n̄J as a function of the
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flux pulse amplitude Φext; results are shown in Fig. B.5(e). Detection efficiency is

defined as the maximum difference P (n̄J ; Φext)−P (n̄J = 0; Φext) for all Φext; note that

our definition assumes a perfect dark pointer state. Results are shown in Fig. B.5(f).

In order to achieve detection efficiency of 99%, one must transfer n̄J ∼ 8 photons

to the JPM; for smaller photon occupation, the Poisson probability of occupying low

lying states in the shallow left well precludes high fidelity measurement. For fixed n̄J ,

improvements in T1,JPM from 10 ns to 100 ns yield improvements in fidelity at the level

of a few percent [Fig. B.5(g)], but also increase the timescales of both JPM-reset and

the depletion interaction.

B.8 Estimates of Photon Occupation

JPM-based qubit state measurement relies on the transfer of cavity pointer states be-

tween the qubit and capture cavities [see Fig. 3.2(a)]. Following pointer state transfer,

the state of the capture cavity is detected by the JPM. The short (∼ 20 ns) JPM

relaxation time makes it difficult to directly measure the mean photon occupation in

the capture cavity [20]; however, we can use Stark spectroscopy to calibrate photon oc-

cupation of the qubit cavity [58, 59]. For these experiments, we create a bright pointer

state corresponding to the qubit |0〉 state in order to circumvent issues associated with

qubit energy relaxation. This is in contrast with the results reported in the main text

where we drove on the dressed |1〉 cavity state to create a bright pointer. The wave-
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forms used for Stark calibration are shown in Fig. B.6(a). Stark data shown in Fig.

B.6(b) indicate a maximum of 10 photons in the qubit cavity for the range of powers

shown. Next, we map our Stark drive (leaving out the spectroscopy and readout drive

pulse) onto JPM switching probability. The switching probability saturates at drive

powers that correspond to a qubit cavity photon occupation of n̄1 ≈ 8. Using the

model described in Appendix B.7, we can estimate the transfer efficiency between the

qubit cavity and the JPM. From our measured JPM switching curves [Fig. 3.3(d)] and

our plot of simulated JPM detection inefficiency versus mean photon number n̄J [Fig.

B.5(g)], we estimate a mean JPM photon occupation of n̄J ∼ 4 during bright pointer

state detection. From this, we estimate a transfer efficiency of ∼ 50% from the qubit

cavity to the JPM in our experiments. This number is in reasonable agreement with

the transient analysis simulations discussed in Appendix B.5. These efficiencies should

not be interpreted as a precise calibration of photon transfer efficiency, but rather as

an order of magnitude estimate for the interested reader.

B.9 Tomography Fits

To estimate the qubit density matrix from the overdetermined tomography described

in Fig. 3.4(c) of the main text, we perform a four-parameter fit to a simplistic model

of the gate sequence and measurement. The model assumes perfect gates and mea-

surement; any fidelity loss then appears as a less pure density matrix. The fit function
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is determined by considering an arbitrary density matrix,

ρ =

(
1− β reiφ

re−iφ β

)
, (B.8)

which is rotated about an axis θ for a time t, given by

R = exp

[
iπ

2

t

tπ
(σx cos θ + σy sin θ)

]
, (B.9)

where tπ is the π-pulse duration and σx and σy are the usual Pauli matrices. After

the rotation, the qubit occupation is measured, M = |1〉〈1|. The average occupation

fit function is thus given by

P (t, θ) = Tr(RρR†M). (B.10)

We then fit the tomographic data to the occupation fit function, with fit parameters

β, r, φ, tπ, resulting in an estimate of the qubit density matrix. The extracted density

matrices for the conditional tomograms shown in Fig. 3.4(c) of the main text are

ρ0 =

(
0.91 0.02
0.02 0.09

)
(B.11)

and

ρ1 =

(
0.31 0.01
0.01 0.69

)
. (B.12)

Here, the subscripts 0, 1 correspond to the classical outcome of the initial qubit

measurement. We then use the estimated density matrices to compute the overlap

(Jozsa) fidelities 〈ψ|ρ|ψ〉, where |ψ〉 is the target state [103].
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(a) (b)

(c) Photodetection

Reset

Figure B.1: JPM design. (a) Circuit schematic of the JPM. (b) SEM micrograph of
the device. Components are color coded to match the schematic (the JPM reflection
capacitor Cr is not shown). (c) Graphical solution of Eq. (B.2). The slope of the line,
-1/βL, determines the number of local minima (shown as open circles) for a fixed Φext.
External flux Φext controls the y-intercept, allowing us to move between a single- and
double-well regime as needed for JPM reset and photodetection. Black arrows show
JPM potentials (with phase particles in blue) for two values of Φext.
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(b)

Qubit

Qubit Cavity

Capture Cavity
(a)

To Capture 
Cavity

From Qubit 
Cavity

Figure B.2: Circuit schematics. (a) Circuit schematic of the JPM chip with component
values listed in Table B.1. (b) Circuit schematic of the qubit chip with component
values listed in Table B.2.
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Figure B.3: Experimental setup. Dashed colored lines divide temperature stages. Cir-
cuit symbols are defined above. Names above the room temperature AWGs and voltage
sources describe their role in the experiment.
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Table B.2: Qubit Circuit Parameters
Label Description Value Method of Determination
C0 Qubit cavity input

coupling capacitor
1 fF Finite element simulations

g1/2π Qubit-cavity coupling
strength

110 MHz Qubit and cavity
spectroscopy

Ec/h Qubit charging energy 250 MHz Qubit spectroscopy of the
f20/2 transition

EJ/h Josephson energy at the
upper flux-insensitive

sweetspot

9.8 GHz Qubit spectroscopy of the
f10 transition

MQB Flux bias mutual
inductance

2.2 pH Cavity spectroscopy versus
applied flux

ω1/2π Fundamental frequency of
the half-wave coplanar
waveguide resonator

5.020 GHz Cavity spectroscopy at the
upper flux-insensitive

sweetspot
L1 Approximate length of the

qubit cavity
12 mm Defined lithographically

Clumped Equivalent lumped element
capacitance of the qubit

cavity

1 pF Analytical expressions

Llumped Equivalent lumped element
inductance of the qubit

cavity

1.1 nH Analytical expressions

QT Total quality factor of the
qubit cavity

8,200 Low power cavity
spectroscopy measured into

a 50 Ω load
C1 Qubit cavity output

coupling capacitor
4.6 fF High power cavity

spectroscopy measurements
into a 50 Ω load on a
separate cooldown.

Consistent with finite
element simulations
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Table B.3: Transmission Line Parameters
Label Description Value Method of Determination
L0 Approximate length of the

coaxial cable
14 cm Direct measurement

Z0 Characteristic impedance
of the coaxial cable

50 Ω Manufacturer specification

vp Propagation velocity of the
coaxial cable

0.7 c Manufacturer specification

α Attenuation constant at 5
GHz

55
dB/(100

ft)

Manufacturer specification
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Figure B.4: Interrogation of JPM oscillation state. (a) Quadrature amplitudes mea-
sured in reflection from a JPM prepared in the two classically distinguishable oscillation
states. Single-shot measurement results are projected along the line joining the cen-
troids of the two distributions for the purposes of thresholding. (b) Histograms of the
JPM readout results. Solid lines are Gaussian fits, and dashed lines are integrated
histograms. Thresholding (double arrow) yields a single-shot fidelity of 99.9%; the
separation fidelity [44] is 99.98%.
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Figure B.5: Theoretically achievable detection efficiency. (a) Potential energy land-
scape of the JPM (with extrema marked as dots) when the plasma frequency of left
well is resonant with the capture cavity. The zoomed-in view of the left well indicates
that the JPM is a weakly anharmonic oscillator at this bias point. Following JPM
interaction with capture cavity, we assume a coherent state with mean photon number
n̄J is transferred into the JPM. (b) Photon state occupation represented in the Fock
basis for various mean photon numbers n̄J . (c) When the JPM is tuned toward Φc,
only a handful of bound states exist in the left well and higher JPM excited states
begin to tunnel at non-negligible rates. The classical turning points used to compute
tunneling rates [see Eq. (B.6)] are shown as dots. (d) Calculated tunneling rates for
the first four levels of the JPM as a function of Φext/Φc. (e) Simulated JPM switching
curves versus applied pulse height for various mean photon numbers n̄J transferred to
the JPM. Switching probability is the fraction of population transferred to the right
well after dynamically evolving the rate equations under the influence of an applied
flux pulse. (f) JPM detection efficiency versus mean photon number n̄J for various
JPM energy relaxation times. Detection efficiencies in excess of 99% are possible for
our detector (T1,JPM ∼ 20 ns) for n̄J & 8; for smaller photon occupation, the Poisson
probability of occupying low lying states in the shallow left well precludes high fidelity
measurement. (g) JPM detection inefficiency versus mean photon number n̄J for var-
ious JPM energy relaxation times. For fixed n̄J , improvements in T1,JPM from 10 ns to
100 ns yield improvements in fidelity at the level of a few percent.
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Figure B.6: Stark calibration of photon occupation. (a) Pulse sequence used for Stark
spectroscopy. Stark drive on the qubit cavity builds up a steady-state photon occupa-
tion in that mode. After steady state is reached, a spectroscopy pulse with variable
frequency is applied to the qubit. Following the spectroscopic pulse, we wait for the
qubit cavity to ring down. Readout drive is then applied to the qubit cavity for pointer
state preparation and subsequent JPM photodetection. (b) Qubit spectroscopy data
versus Stark drive power. Each of the sloped yellow lines corresponds to a distinct
photon number state in the qubit cavity. (c) JPM switching probability versus Stark
drive power. Here we use the Stark drive for pointer state preparation (ring down,
readout drive, and spectroscopy pulse are omitted). Parts (b) and (c) permit mapping
of JPM switching probability onto photon occupation in the qubit cavity, allowing for
an estimate of photon transfer efficiency during bright pointer state detection.
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Appendix C

Supplementary Materials for JPM

Experiment II

C.1 Sample Fabrication

These samples were fabricated on a high-resistivity (& 10 kΩ-cm) silicon substrate with

100 crystal orientation. Prior to base layer deposition, the substrate is dipped in dilute

(2%) hydrofluoric acid for one minute to remove native oxide from the surface. We

then load the substrate into a dc magnetron sputter tool and deposit a 70 nm-thick film

of Nb. The first patterning step defines all Nb features including the control wiring,

measurement resonators, qubit capacitors, and spiral inductors. This pattern is then

transferred into the Nb using an inductively coupled plasma etcher with Cl2/BCl3
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chemistry. Next, we pattern the sample for liftoff and deposit the insulator used

for crossover wiring and parallel-plate capacitors. The 180 nm-thick film of SiO2 is

deposited using an electron beam evaporator at an oxygen partial pressure PO2 = 10−5

Torr. In the final photolithography step, we pattern the sample for counterelectrode

liftoff. We then deposit a 200 nm-thick Al counterelectrode using an electron beam

evaporator after performing an in situ ion mill clean to ensure good metallic contact

to the base wiring layer. Finally, the JPM and qubit junctions are formed using a

Dolan-bridge process [104] involving an MMA/PMMA resist stack patterned using a

100 keV electron-beam writer. The Al-AlOx-Al junctions are shadow evaporated in

an electron beam evaporator following an in situ ion mill clean. This completes the

device. Circuit parameters for the chip are listed in Table C.1 with component labels

indicated in Fig. 4.2(b).

C.2 Measurement Setup

The wiring diagram for our measurement setup is shown in Fig. C.4. The waveforms

for JPM readout (jr1/2), qubit excitation (xy1/2), and resonator drive are generated

via single sideband mixing. Keysight M3202A arbitrary waveform generators (AWGs;

14 bit, 1 GS/s) produce intermediate frequency (IF) signals that are mixed with a

local oscillator (LO) to generate shaped pulses at microwave frequencies. The qubit

and JPM flux-bias waveforms (z1/2 and jz1/2, respectively) are directly synthesized
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using the AWGs. Signal rise times ≈ 1 − 2 ns on the jz1/2 waveforms are critical

to the success of the qubit measurement sequence [see Fig. 4.4(a)]. The state of the

JPM is read out in reflection using a directional coupler. The reflected signal is passed

through several stages of isolation and filtering prior to amplification by a high electron

mobility transistor (HEMT) amplifier at the 3 K stage of the cryostat. Following

additional room temperature amplification, the signal is sent to the RF port of an IQ

mixer where it is down converted and digitized using an AlazarTech ATS9870 analog-

to-digital converter (ADC; 8 bit, 1 GS/s). Further signal processing and thresholding

are performed in software in order to extract the amplitude and phase of the reflected

signal. The fidelity with which we measure the flux state of the JPM is better than

99.99%; see Fig. 4.3(b).

C.3 Stark Calibration

We use the ac Stark effect [58, 59] to estimate photon occupation of the bright and dark

pointer states; the pulse sequence is shown in Fig. C.1(a). First, we prepare the qubit in

|1〉 (|0〉) through the application of anX-gate (I-gate). Next, we drive the measurement

resonator at the optimal frequency and power found in Fig. 4.5 but for a variable

amount of time, populating the measurement cavity with a mean number of photons

n̄r. At the end of the Stark drive, a low-power, 500 ns-long Stark spectroscopy pulse is

applied to determine the qubit frequency shift ∆ωq ≡ ωq(n̄r)−ωq(n̄r = 0). Because the
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photon lifetime in the readout cavity is relatively long ∼ 1.5 µs, n̄r can be considered

static on the timescale of the spectroscopy experiment. We then reset the resonator

using the JPM to deplete the remaining photon occupation (see Appendix C.5). Finally,

we measure the qubit using the sequence described in Fig. 4.4. The results are shown

in Fig. C.1(b, c). We find that the bright pointer state corresponds to a mean photon

occupation of n̄r ≈ ∆ωq/2χ = 27 photons, where ∆ωq/2π ≈ −200 MHz at the optimal

drive time (td = 105 ns) and 2χ/2π = 7.4 MHz is the Stark shift per photon. Similarly,

the dark pointer acquires a maximum photon occupation n̄r ≈ 4 photons halfway

through the drive pulse, but at the end of the resonator drive it returns to a state that

is very close to vacuum. For this qubit operation point, the critical photon number

ncrit = (∆q,r/gq,r)
2/4 ' 13 photons. We note that these estimates of photon occupation

neglect the effect of photon loss during the Stark spectroscopy pulse and the dependence

of χ on n̄r.

C.4 Fidelity Budget

The nonvanishing P (1|0) contains contributions both from qubit initialization errors

and from imperfect dark pointer state preparation. In order to separately quantify

these errors, we performed a series of measurements following active reset of the qubit

with resonator drive amplitude swept from its optimal value down to zero [Fig. C.2(a)];

for comparison with Fig. C.1, the calibration described in that figure was performed
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Figure C.1: Stark calibration of pointer states. (a) Pulse sequence used for pointer-
state calibration. These experiments were performed at the optimal resonator drive
amplitude 0.885 arb. units (see Fig. 4.5). For details concerning resonator reset, see
Appendix C.5. (b) Qubit frequency shift versus Stark drive time for the bright pointer
state. (c) As in (b), but for the dark pointer state.

at a drive amplitude of 0.885 arb. units. As a result, we can be sure that for drive

amplitude . 0.4 arb. units, the maximum photon occupation of the dark pointer is

less than one photon, which is much less than ncrit over the entire course of driven

evolution; at this level of cavity occupation, the dressed resonance corresponding to

the qubit |0〉 state is well approximated by a linear mode. Therefore, we can attribute

all of the tunneling at low resonator drive amplitude to excess |1〉 population alone,

eliminating contributions caused by the Kerr nonlinearity of the resonator that occur

at full drive strength. In Fig. C.2(b, c), we show linear fits to the data of Fig. C.2(a)

for resonator drive amplitudes ranging between 0.25-0.4 arb. units. The ratio of the
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slopes extracted from these fits gives an estimate of excess |1〉 population of 0.3% for

nominal preparation of the |0〉 state. We attribute the remaining contribution to P (1|0)

to imperfect dark pointer preparation, with infidelity 0.6%.
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Figure C.2: Estimating excess |1〉 population. (a) JPM tunneling probability versus
resonator drive amplitude for qubits initialized in states |0〉 (blue) and |1〉 (orange).
Based on our Stark calibration at the optimal drive amplitude 0.885 arb. units, we
know that for drive amplitudes . 0.4 arb. units, the maximum photon occupation of
the dark pointer is less than one photon (� ncrit). Therefore, the dressed resonance
corresponding to the qubit |0〉 state is well approximated by a linear mode during
driven evolution. (b) Linear fits of JPM tunneling probability versus resonator drive
amplitude over the range from 0.25-0.4 arb. units with the qubit prepared in |1〉. (c)
As in (b), but with the qubit prepared in |0〉.
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C.5 JPM-Assisted Resonator and Qubit Reset

The intrinsic damping of the JPM provides an efficient method for the rapid reset of

the resonator and qubit modes. This is accomplished by simply biasing the JPM into

resonance with the mode of interest for a brief period of time. The data shown in Fig.

C.3(a, b) demonstrate reset of the measurement resonator. In Fig. C.3(a) we plot

JPM tunneling probability following photodetection of the bright pointer state after

a variable ring-down delay. We observe that passive resonator reset requires ' 10 µs

to complete, a consequence of the high-Q measurement resonator used in our design.

To accelerate resonator reset, we bias the JPM into resonance with the measurement

resonator during the ring-down delay, as shown in Fig. C.3(b). With the JPM and

resonator fully hybridized, the energy decay time of the mode is suppressed to around

10 ns, allowing for rapid on-demand depletion of the measurement resonator. We find

that JPM-assisted resonator reset is accomplished in under 100 ns.

We extend this idea to qubit reset in the experiments described in Fig. C.3(c, d).

In each of these datasets, qubit |1〉 occupation is measured after the application of

an X-gate followed by a variable delay. We find that passive reset based on qubit

T1 relaxation requires approximately 20 µs. However, when the JPM is biased into

resonance with the qubit during reset, accurate qubit initialization is accomplished in

under 100 ns. Throughout the experiments described in this manuscript, JPM-assisted

qubit reset was used to suppress excess |1〉 state population from a baseline value of
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4% to 0.3%.
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Figure C.3: JPM-assisted resonator and qubit reset. (a) JPM photodetection of the
bright pointer state after a variable ring-down delay. Passive resonator reset requires
around 10 µs, which is too slow for the surface code cycle. (b) As in (a), but with
the JPM biased into resonance with the resonator ωr = ωj during the ring-down delay.
Active resonator reset is performed in under 100 ns. (c) Qubit T1 experiment. Passive
qubit reset based on intrinsic relaxation processes requires a time of order 20 µs. (d)
As in (c), but with the JPM and qubit biased into resonance with the measurement
resonator (ωr = ωj = ωq) during the T1-delay. Active qubit reset is performed in under
100 ns.
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Label Description Value Method of Determination
gj1/2π JPM-resonator coupling

strength for j1-r1
62 MHz JPM spectroscopy versus flux

gj2/2π JPM-resonator coupling
strength for j2-r2

63 MHz JPM spectroscopy versus flux

gq1/2π Qubit-resonator coupling
strength for q1-r1

90 MHz Qubit and resonator
spectroscopy

gq2/2π Qubit-resonator coupling
strength for q2-r2

92 MHz Qubit and resonator
spectroscopy

ωr1/2π Bare frequency for resonator r1 5.693 GHz High power resonator
spectroscopy with j1 maximally

detuned
ωr2/2π Bare frequency for resonator r2 5.825 GHz High power resonator

spectroscopy with j2 maximally
detuned

κr1 Total energy decay rate of
resonator r1

1/(1.53
µs)

VNA measurements with j1
maximally detuned

κr2 Total energy decay rate of
resonator r2

1/(1.51
µs)

VNA measurements with j2
maximally detuned

gq1,q2/2π Qubit-qubit coupling strength 16 MHz Qubit spectroscopy about the
avoided level crossing

(degeneracy at 5.1 GHz)
T1,j Energy relaxation time of the

JPM
5 ns VNA measurements with the

JPM detuned from the
resonator

Lj Geometric inductance of the
JPM

1.3 nH JPM spectroscopy versus flux

Cj Self-capacitance of the JPM 2.2 pF JPM spectroscopy versus flux
Cjr Reflection capacitor of the JPM 33 fF JPM spectroscopy versus flux
I0j Critical current of the JPM 1.4 µA JPM spectroscopy versus flux

and 4-wire resistance
measurements of cofabricated

test junctions
Mj Mutual inductance between the

JPM and external bias circuitry
4.8 pH JPM spectroscopy versus flux

I0q Total critical current of the
transmon dc SQUID loop

43 nA Qubit spectroscopy versus flux

Mq Mutual inductance between the
qubit and external bias

circuitry

1.4 pH Resonator spectroscopy versus
qubit flux

η/2π Qubit anharmonicity -225 MHz Qubit spectroscopy of the
|0〉 → |1〉 and |1〉 → |2〉

transitions
Cxy Qubit excitation capacitance 40 aF Sonnet simulation

Table C.1: Circuit parameters for chip #1. Labels can be found in Fig. 4.2(a, b).
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