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Abstract

Josephson junction-based devices have demonstrated utility in a breadth of applica-

tions ranging from quantum computation to sensing and metrology. In this thesis we

introduce two novel superconducting devices: a mm-wave detector utilizing a Josephson

junction for impedance matching to free space to enhance power absorption efficiency and

a protected qubit relying on engineered composite Josephson elements. First we introduce

a novel quantum sensor, consisting of impedance-matched Josephson junction-based slot

antennas embedded in a microwave kinetic inductance detector. We discuss operating

principles and design of such devices. We present data on the response of devices to a

thermal quasiparticle distribution and the calibration of the detector using a blackbody

source. And finally spectroscopic characterization of the devices with a Josephson emitter.

In the second part of this thesis we describe work toward the design, control, and char-

acterization of a novel protected qubit, the charge-parity qubit, consisting of a composite

pi-periodic Josephson element shunted by a large capacitance. Such a device provides

protection against local noise at the hardware level and aspires to substantially reduce the

overhead needed for quantum error correction. Together these projects demonstrate the

versatility of the Josephson junction to superconductive quantum devices.
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Chapter 1

Josephson junction based

quantum devices

Since their proposal by B. D. Josephson in 1962 [1] and subsequent demonstration by P. W.

Anderson and J. M. Rowell in 1963 [2] Josephson junctions have prompted a flourishing

field of research. They have found utility in applications including but not limited to:

metrology, spectroscopy, sensing, and quantum computation. In this thesis we report on

two novel quantum devices that demonstrate the utility and breadth of application of the

Josephson junction. In this Chapter we introduce the Josephson junction, starting with the

DC and AC Josephson effects. From these equations we derive the Josephson frequency,

which makes a reappearance in Chapter 6 in the context of a transmit-receive experiment

to characterize the spectral response of the quantum sensor discussed in the first half of

this thesis. We go on to derive the Josephson inductance and Josephson energy, which are

critical to the design and operation of the composite Josephson elements discussed in the

second half of this thesis (starting from Chapter 8). Particulars of the junction fabrication

process are left to Appendix B.1.

Consider the case of two superconducting films in close proximity with one another

(shown in Fig. 1.1 (a)). The macroscopic superconducting state of each superconductor
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Figure 1.1: (a) A Josephson junction is two superconductors separated by a weak link. The
overlap in the wavefunctions of the two superconductors allows for tunneling of Cooper
pairs across the barrier. (b) Circuit element representation of the Josephson junction. I0
is the junction critical current. δ is the phase difference across the junction. (c) Scanning
electron micrograph of an Al-AlOx-Al Josephson junction, deposited via double-angle
evaporation. The junction (orange) exists where the two superconducting electrodes (false
color red and yellow) overlap.The weak link is a layer of aluminum oxide, a few nm thick,
grown in situ.

can be described by the wavefunction [3, 4]

|ψ1,2⟩ =
√
ncpe

iδ1,2 (1.1)

where ncp is the density of Cooper pairs, the charge carriers in the superconductor, and δ is

the superconducting phase. In this case, it is convenient to work in terms of the difference

between the two superconducting phases, δ = δ1 − δ2. If there is sufficient overlap in

the wavefunctions of the two superconducting states (a weak link), then it is possible for

Cooper pairs to tunnel across the barrier, resulting in a supercurrent.

The electrical behavior of the Josephson junction, this weak link between two su-

perconductors, is described by the Josephson relations [1]. The characteristic sinusoidal

current-phase relation

I = I0 sin δ (1.2)

describes the supercurrent flowing across the Josephson junction. I0 is the junction’s

critical current, while the voltage phase relation

2eV = ℏ
∂δ

∂t
(1.3)
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describes the rate of change of the phase for a voltage, V , applied across the junction. It

is sometimes convenient to rewrite Eq. 1.3 in terms of the flux quantum, Φ0 = h/2e

V =
ℏ
2e

∂δ

∂t
=

Φ0

2π

∂δ

∂t
. (1.4)

Differentiating the first Josephson relation with respect to time

dI

dt
= I0 cos δ

dδ

dt
(1.5)

and substituting into the second relation, we have

V =
Φ0

2π

1

I0 cos δ

dI

dt
. (1.6)

Recall the definition of an inductance,

V = L
dI

dt
(1.7)

the ratio between the rate of change of the current and the voltage. Noting the similarity

between the two expressions we see that the Josephson junction will represent a nonlinear

inductance,

L(δ) =
Φ0

2π

1

I0 sin δ
=

LJ

sin δ
(1.8)

where LJ = Φ0/2πI0 is the Josephson inductance. The nonlinearity of the Josephson

junction is a critical ingredient for the construction of superconducting qubits [5]. The

junction’s critical current is related to the normal state resistance, Rn

I0 =
π∆

2eRn
tanh

(
∆

2kBT

)
(1.9)

where ∆ = 1.76kBTc is the superconducting energy gap at zero temperature [3]. In the
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low temperature limit, T ≪ Tc this reduces to [6]

I0 =
π∆

2eRn
. (1.10)

This is the Ambegaokar-Baratoff relation which allows us to relate the Josephson induc-

tance to the normal state resistance,

LJ =
ℏRn

π∆
(1.11)

and by extension the Josephson energy (derived below). This is incredibly useful as it

allows us to estimate the junction’s energy scales from room temperature measurements

of the normal state resistance.

One can then calculate the potential energy,

U =

∫
IV dt (1.12)

from the Josephson relations.

U(δ) =

∫
I0 sin δ

Φ0

2π
dδ = −I0Φ0

2π
cos δ ≡ −EJ cos δ (1.13)

where EJ = I0Φ0/2π is the Josephson energy. Alternately, we can rewrite the Josephson

energy in terms of the Josephson inductance,

EJ =

(
Φ0

2π

)2 1

LJ
. (1.14)

The Josephson junction will have some capacitive energy associated with it, depending on

the area of the superconducting electrodes and the distance between them.

EC =
e2

2CJ
. (1.15)

This is especially easy to see in the case of a junction where the weak link is an insu-
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lating barrier. For instance, Al-AlOx-Al Josephson junctions deposited via double-angle

evaporation (Fig. 1.1 (c)) will have some overlap capacitance associated with them due

to the nature of their construction. For small-area Josephson junctions, this capacitance

can be non-negligible. Together the Josephson energy, EJ , and the charging energy, EC ,

determine behavior of superconducting circuits such as the Transmon qubit [5]. Starting

in Chapter 8 we see how these energies, along with a linear inductive energy, EL, (imple-

mented as an array of large-area Josephson junctions [7]) can be used to design quantum

circuits to engineer a desired potential landscape.

Finally, we can consider the temporal dynamics of the Josephson junction. Considering

the case of a constant applied voltage, we can solve Eq. 1.3 for the time-dependent phase

2eV

ℏ
=
dδ

dt
(1.16)

δ(t) =
2eV

ℏ
t. (1.17)

Substituting into the current-phase relation

I = I0 sin

(
2eV

ℏ
t

)
(1.18)

we see that a constant applied voltage will result in an oscillating current. Hence a voltage-

biased Josephson junction will emit radiation at

fJ =
2eV

h
(1.19)

the Josephson frequency. Evaluating the physical constants, 2e/h ≈ 484 GHz/mV, we see

that for an applied DC bias voltage of 1-10 mV the junction will emit radiation in the

mm-wave to THz regime. In Chapter 6 we show how this effect can be used to probe

the spectral response of a novel mm-wave sensor. Finally, two analogies which are useful

for understanding the dynamics of Josephson junctions are the driven pendulum and the

tilted washboard potential [3]. However, within the scope of this thesis we constrain
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ourselves to a relatively simple treatment of the Josephson junction, preferring to focus

on applications.

The remainder of this thesis is split into two parts, each discussing the design, fab-

rication and operation of a novel Josephson junction-based quantum device. First, we

discuss operation and design of a novel Josephson mm-wave quantum sensor. The sensor,

a pair-breaking detector, is sensitive to changes in the quasiparticle distribution of the

superconductor. We investigate response of the detector to a thermal quasiparticle distri-

bution (Chapter 4) before calibrating the detector performance with a blackbody emitter

(Chapter 5). Finally, we expose the detector to radiation emitted by a voltage-biased

Josephson junction, to monitor the spectral response (Chapter 6). The second part of this

thesis is concerned with work towards the development of a novel topologically protected

qubit. Operation of this device relies on composite π-periodic Josephson elements, called

plaquettes. We begin the second part of the thesis by motivating the need for protection

at the hardware level, and aspiring to elucidate the origins of protection in this circuit

(Chapter 8). We discuss construction of these composite Josephson elements (Chapter

9), as well as their design and control (Chapter 10). We present data on initialization of

the devices and spectroscopy of higher excited states, and discuss steps towards coherent

control of the devices (Chapter 11). The dissimilarity of these two projects demonstrates

diversity of applications in which the Josephson junction finds utility.
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Part I

Josephson mm-wave detectors
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Chapter 2

Operating principles

The purpose of this chapter is to elucidate how a superconducting resonator can be used

to detect changes in the quasiparticle distribution of a superconductor. We start by in-

troducing the concept of quasiparticle excitations1.We then introduce the complex surface

impedance [8] of the superconducting film and its relation to the complex conductivity

[9–11] before working through the circuit model description of the detector, relating the

changes in the real and imaginary parts of the complex conductivity to the experimental

observables: amplitude and phase. We conclude by discussing strategies to improve cou-

pling to pair breaking radiation, in particular the addition of an antenna to aid absorption

of pair-breaking radiation.

2.1 Superconductivity: Cooper pairs and quasiparticles

When cooled below the critical temperature, Tc, electrons pair, forming Cooper pairs,

which condense into a macroscopic quantum state [12]. Cooper pairs allow for the lossless

flow of current through the superconducting film, a hallmark of superconductivity [4, 13,

14]. In addition to Cooper pairs, there exist excitations out of the superconducting ground

state, called quasiparticles. Quasiparticles are generated when energy greater than twice

1More correctly called Bogoliubov quasiparticles or Bogoliubons, but referred to as quasiparticles in
this thesis
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Figure 2.1: (a) Pair-breaking radiation (hf > 2∆) is absorbed by the superconductor,
providing sufficient energy to break a Cooper resulting in two quasiparticle excitations.
We employ a hybrid design consisting of a coplanar waveguide whose center conductor and
ground plane are both niobium with an aluminum sensing volume at the current anti-node.
(b) The pair-breaking detector consists of a superconducting resonator, shunted to ground
via a high kinetic inductance nanowire. This nanowire can be modeled as an inductor in
parallel with a resistor, the values of which are related to the quasiparticle distribution in
the sensing volume via the Mattis Bardeen integrals [15] (c) Absorption of pair-breaking
radiation results in a change in the quasiparticle distribution of the sensing volume, thus
modifying the inductance and resistance. A change in inductance results in a shift in the
frequency, and a modification of the resistance results in the resonator loss.

the superconducting gap2, ∆, is absorbed, providing sufficient energy to break a Cooper

pair resulting in the creation of two quasiparticles. Often, this pair-breaking energy is

provided by the absorption of a photon with energy greater than 2∆, although it can also

be due to phonon-interactions [16]. The number of quasiparticles per unit volume in a

superconductor is given by [17]

nqp = 2N0

∫ ∞

∆
ρ(E)f(E)dE (2.1)

where N0 is the single spin density of states at the Fermi level 3 , and ρ(E) = E/
√
E2 −∆2

is the normalized quasiparticle density of states, with E the quasiparticle energy. For low

2∆/e = 190µV for aluminum.
3N0 = 1.72× 1010 µm3eV−1 for aluminum [18].
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temperatures (kBT ≪ ∆) this simplifies to [19]:

nqp = 2N0

√
2πkBT∆e

−∆/kBT . (2.2)

One may also work with the total number of quasiparticles, Nqp = nqpV or the reduced

quasiparticle density [17], xqp = nqp/ncp where ncp is the density of Cooper pairs. The

reduced quasiparticle density is particularly useful as it is independent of geometry, and

has an approximate analytical form [20]

xqp ≈
√
2πkBT/∆e

−∆/kBT . (2.3)

Once generated, quasiparticles will stay in the superconducting film until they recombine.

For a thermal distribution of quasiparticles, the recombination time is given by [21]

τqp =
τ0√
π

(
kBTc
2∆

)5/2
√
Tc
T
e∆/kBT (2.4)

where τ0 = 438 ns [21] is the electron-phonon interaction time for aluminum. Note that

due to the exponential dependence on temperature in both Eq. 2.2 and Eq. 2.4, the

product of the number of quasiparticles and the quasiparticle lifetime will be independent

of temperature

Nqpτqp =
τ0N0(kBTc)

3V

2∆2
. (2.5)

We will revisit this in Chapter 4.

2.2 Surface impedance and the complex conductivity

Bardeen4, Cooper, and Schrieffer introduced the microscopic theory of superconductivity

in their seminal 1957 paper [12]. They define a complex conductivity describing the

4John Bardeen was born in Madison, Wisconsin and is buried in the Forest Hill Cemetery.
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electrical response of a superconducting film,

σ = σ1 − jσ2. (2.6)

The expressions for the real and imaginary parts of the complex conductivity are given by

the Mattis Bardeen integrals [15]

σ1
σn

=
2

ℏω

∫ ∞

∆

[f(E)− f(E + ℏω)](E2 +∆2 + ℏωE)√
E2 +∆2

√
(E + ℏω)2 +∆2

dE (2.7)

σ2
σn

=
1

ℏω

∫ ∆

∆−ℏω

[1− 2f(E + ℏω)](E2 +∆2 + ℏωE)√
∆2 − E2

√
(E + ℏω)2 −∆2

dE (2.8)

where f(E) is the energy distribution the quasiparticles and σn is the normal state con-

ductivity. For a thermal distribution of quasiparticles these expressions evaluate to

σ1(T )

σn
=

4∆

hf
e−∆/kBT sinh

(
hf

2kBT

)
K0

(
hf

2kBT

)
(2.9)

σ2(T )

σn
=
π∆

hf

[
1−

√
2πkBT

∆
e−∆/kBT − 2e−∆/kBT e−hf/2kBT I0

(
hf

2kBT

)]
(2.10)

where I0 and K0 are the modified Bessel functions of the first and second kind, respec-

tively. Derivations can be found in [9, 10]. The real and imaginary parts of the complex

conductivity can be related to the surface impedance of the superconductor,

Zs = Rs + jωLs =

√
iµ0ω

σ1 − jσ2
(2.11)

for a bulk superconductor (film thickness, d≫ λL, the London penetration depth) in the

local limit [8]

Rs =

√
µ0ω

σ2

σ1
2σ2

= µ0ωλL
σ1
2σ2

(2.12)

Ls =

√
µ0
ωσ2

= µ0λL. (2.13)
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In the case of film of finite thickness, d, there is a correction to Eq. 2.11 [8]

Zs =

√
iµ0ω

σ1 − jσ2
coth

(
d

λL

√
1 + j

σ1
σ2

)
(2.14)

in which case Eq. 2.12 and Eq. 2.13 become [10]

Rs = µ0ωλL
σ1
2σ2

β coth(d/λL) (2.15)

Ls = µ0λL coth(d/λL) (2.16)

defining

β = 1 +
2d/λL

sinh(2d/λL)
. (2.17)

In the following Sections, we will return to these expressions when we derive the change

in frequency and internal quality factor of the resonator due to a change in the quasi-

particle distribution of the superconductor. We further relate the change in experimental

observables, amplitude and phase, to a change in the internal quality factor and frequency.

2.3 Pair-breaking detector: a simple circuit model

The detector developed in this thesis is a type of microwave kinetic inductance detector.

It consists of a quarter wave coplanar waveguide (CPW) resonator shunted to ground via

a high kinetic inductance nanowire. This nanowire can be modeled as an inductance,

Lk, in parallel with a resistor, Rqp. The inductance is due to the inertia of the Cooper

pairs while the resistance is due to the quasiparticle excitations. These quantities can be

related to the Mattis Bardeen expressions for the real and imaginary parts of the complex

conductivity [15]. In this section, working from this circuit model, we derive expressions

for the change in the resonator loss, 1/Q where Q is the quality factor, and the fractional

frequency shift, f/f0. We then relate these quantities to the change in amplitude, A, and

phase, θ, (observables in our experimental system).
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Figure 2.2: Circuit model of the Josephson mm-wave detector. (a) Capacitively coupled
quarter wave coplanar waveguide resonator shunted to ground via a high kinetic inductance
nanowire. The nanowire is modeled as an inductor in parallel with a resistor. The coupling
circuit is indicated with a yellow box. The quarter wave resonator is indicated in blue, and
the nanowire is shown in orange. (b) Assuming that the input and output impedance are
the same, the coupling circuit can be rewritten as a resistor in parallel with the coupling
capacitor, Cc. (c) The series-to-parallel mapping (see Appendix A.1 for details) applied to
the nanowire circuit. (d) From the standpoint of the nanowire, the quarter wave resonator
looks like an open circuit and can thus be mapped to a series LCR circuit [22] Lg is the
geometric inductance, Ri the internal loss, and C the geometric capacitance.
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2.3.1 Derivation of δ(1/Qi) and δf/f0

Fig. 2.2 (a) shows the full circuit representation of our detector. The coupling circuit,

including the coupling capacitor, Cc and the feedline, with characteristic impedance Z0 =

50Ω is shown in yellow. The λ/4 CPW resonator is shown in blue, and the nanowire circuit

is indicated in orange. Assuming that the input and output impedance of the feedline is

the same, we can rewrite the coupling circuit as is shown in Fig. 2.2 (b). An appealing

feature of microwave kinetic inductance detectors that extends to our detector design is

that frequency multiplexing allows for the creation of kilopixel arrays. Efficient frequency

multiplexing requires a clear understanding of how the combined circuit resonates. The

discussion of the coupling circuit is left to Appendix A.2. For the purposes of calculating

the change in the resonator loss and the factional frequency shift we disregard the coupling

circuit momentarily.

Starting from the circuit shown in Fig. 2.2(b), we map the parallel resistance, Rqp, and

inductance, Lk, to an equivalent series resistance and inductance (see Appendix A.1 for

details). In the high Q limit, the series inductance, Lseries ≈ Lk and the series resistance

Rseries ≈ (ωLk)
2/Rqp. The equivalent circuit is shown in Fig. 2.2(c). From the standpoint

of the nanowire (node A) the capacitively coupled end of the CPW resonator looks like

an open. Hence, we map the quarter wave resonator to an equivalent series LCR circuit

[22] (Fig. 2.2(d)). With all circuit elements now in series, we write down an expression

for the quality factor.

Q =
ω(Lg + Lk)

Rseries
=
ω(Lg + Lk)Rqp

(ωLk)2
. (2.18)

Using the definition of the kinetic inductance fraction, α ≡ Lk/Ltotal we have

Q =
1

α

Rqp

ωLk
(2.19)

Referring back to Eq. 2.12 and Eq. 2.13, we rewrite Eq. 2.19 in terms of the Mattis

Bardeen expressions

Q =
2

αβ

σ2
σ1

(2.20)
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Assuming that other loss channels in the resonator are low, this quality factor will dominate

the internal quality factor, Qi, of the resonator. Furthermore a change in the internal

quality factor will be due to a change in the quasiparticle distribution of the nanowire. In

the case of a thermal quasiparticle distribution, we can write down an expression for the

change in the quality factor δ(1/Q).

δ

(
1

Q

)
=

1

Q(T )
− 1

Q(T = 0)
=
αβ

2

[
σ1(T )

σ2(T )
− σ1(T = 0)

σ2(T = 0)

]
. (2.21)

Using the fact that for T ≪ Tc, δσ2 ≪ δσ1 [23] which implies σ2(T ) ≈ σ2(T = 0) we arrive

at

δ

(
1

Q

)
≈ αβ

2

δσ1
σ2

. (2.22)

From Eq. 2.22 we see that a change in the quality factor of the detector will be due to

a change in the real part of the complex conductivity and thus it is associated with the

quasiparticle excitations.

We turn our attention now to finding an expression for the resonant frequency of the

combined resonator-nanowire circuit. To do this we use the method of load lines. The

impedance of the resonator is

Zr(ω) = Ri + j

(
ωLg −

1

ωC

)
(2.23)

and the impedance of the nanowire is

Znw(ω) =
(ωLk)

2

Rqp
+ jωLk. (2.24)

On resonance, the imaginary part of the impedance at node B will be zero such that imag-

inary part of the nanowire impedance, Znw(ω), and the imaginary part of the resonator

impedance, Zr(ω), will cancel.

0 = Im[ZB(ω)] =

(
ωLg −

1

ωC

)
+ ωLk (2.25)
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Figure 2.3: Load lines analysis for the combined resonator-nanowire circuit. (a) The
imaginary part of the impedance. The imaginary part of the resonator’s impedance is
shown in blue. The nanowire’s impedance is shown in orange. The intersection point
defines the new resonance of the combined system. The gray dotted line shows the analyt-
ical expression derived in Section 2.3.1. The black dashed line shows the bare resonance
of the λ/4 resonator. (b) The imaginary part of the resonator admittance (blue) and
nanowire admittance (orange). The resonator has dispersive lineshape while the nanowire
is monotonically decreasing. This results in two intersection points. The higher frequency
corresponds to the bare quarter wave resonance. The lower frequency zero is the new
resonance, including loading from the nanowire.

0 = ω2(Lg + Lk)C − 1

ω2 =
1

(Lg + Lk)C

ω ≡ 1√
(Lg + Lk)C

. (2.26)

This defines a new resonance, including added inductance from the nanowire. The problem

can equivalently be solved by setting the imaginary part of the admittance at node B to

zero and solving for the frequency. In this case, there are two zeros. The higher frequency

zero corresponds to the resonant frequency of the quarter wave resonator alone. The lower

frequency zero is the resonant frequency including the nanowire. The solution is illustrated

graphically in Fig. 2.3.

In the same way that we did for the quality factor, we can relate the change in the

fractional frequency to a change in the complex conductivity. The change in the resonant
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frequency will be due to a change in the kinetic inductance of the nanowire. We start by

defining the temperature dependent resonant frequency

ω(T ) =
1√

(Lg + Lk(T ))C
(2.27)

rewriting this in terms of the change in the kinetic inductance, δLk = Lk(T )−Lk(T = 0),

we have

ω(T ) =
1√

(Lg + Lk(T = 0) + δLk)C
. (2.28)

Define L0 = Lg + Lk(T = 0), then

ω(T ) =
1√

L0C(1 + δLk/L0)
≡ ω(T = 0)√

1 + δLK/L0

. (2.29)

For T ≪ Tc we have δLk/L0 ≪ 1 allowing us to Taylor expand

ω(T ) ≈ ω(T = 0)

(
1− 1

2

δLk

L0

)
. (2.30)

Looking at the change in the fractional frequency shift,

δω

ω0
=
ω(T )− ω(T = 0)

ω(T = 0)

=
ω(T )

ω(T = 0)
− 1

= −1

2

δLk

Lg + Lk(T = 0)

= −1

2

δLk

Lg + Lk(T = 0)

Lk(T = 0)

Lk(T = 0)

δω

ω0
= −α

2

δLk

Lk(T = 0)
(2.31)

where we have used the definition of the kinetic inductance fraction

α =
Lk

Lg + Lk
. (2.32)
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We can further relate the fractional frequency shift to the change in the imaginary part of

the complex conductivity via the surface impedance (Eq. 2.11). Using the expression for

the surface inductance of a bulk film from Eq. 2.13, and explicitly noting the temperature

dependence,

δLk

Lk(T = 0)
=
Lk(T )− Lk(T = 0)

Lk(T = 0)

=
Lk(T )

Lk(T − 0)
− 1

=

√
µ0/ωσ2(T )√

µ0/ωσ2(T = 0)
− 1

=

√
σ2(T = 0)

σ2(T )
− 1

We play the same trick as before, rewriting σ2(T ) = σ2(T = 0) = δσ2 and again making

the low temperature approximation

δLk

Lk(T = 0)
=

√
σ2(T = 0)

σ2(T = 0)(1 + δσ2/σ2(T = 0))
− 1

=

√
1

1 + δσ2/σ2(T = 0)
− 1

=

(
1− 1

2

δσ2
σ2(T = 0)

)
− 1

δLk

Lk(T = 0)
= −1

2

δσ2
σ2(T = 0)

. (2.33)

Therefore, returning to Eq. 2.31

δω

ω(T = 0)
=
α

4

δσ2
σ2(T = 0)

. (2.34)

For a finite thickness films there is an additional coth dependence [8] (see Eq. 2.14), we

pick up an extra factor of β = 1 + (2d/λ)/ sinh(2d/λ) [10] arriving at

δω

ω0
=
ω(T )− ω(T = 0)

ω(T = 0)
=
αβ

4

δσ2
σ2

. (2.35)
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From Eq. 2.22 and Eq. 2.35 we see that the change in the quality factor will be

mainly due to changes in the real part of the complex conductivity (due to fluctuations

in the number of quasiparticles, Nqp). The change in the fractional frequency will be

due to changes in the imaginary part of the complex conductivity and thus associated

with changes in the number of Cooper pairs, Ncp. Of course noting that these two values

are related. Having calculated the change in δ(1/Qi) and δf/f0 we can now relate these

quantities to our experimental observables, amplitude and phase.

2.3.2 Relating δ(1/Q) and δf/f0 to a change in amplitude and phase

For our detector, consisting of a λ/4 CPW resonator shunted to ground via a high ki-

netic inductance nanowire, we have derived the resonator response due to a change in

the quasiparticle distribution in the nanowire. We can probe changes in these quanti-

ties experimentally by monitoring the amplitude or phase on resonance via a heterodyne

measurement. In this section we relate changes in δ(1/Q) and f/f0 to our experimental

observables amplitude and phase. We start by deriving the expression for the forward

scattering matrix element, S21, of capacitively coupled λ/4 resonator (Fig. 2.4). Here we

assume that the input and output impedance of the feedline are equal (Z0 = 50Ω). For

discussion of how to model a small impedance mismatch, see [24]. We then relate our

expression for S21 (depending on the internal quality factor and fractional detuning) to

amplitude and phase on resonance. From here we relate δ(1/Q) and δf/f0 to changes in

amplitude and phase. The first part of this analysis follows closely an unpublished internal

note by R. McDermott.

The circuit representation of a capacitively coupled λ/4 resonator is shown in Fig. 2.4

(b). The electrically open end of the quarter wave resonator, when placed sufficiently close

to the feedline will have some capacitance, Cc, to the central strip of the transmission line.

We assume here that the input and output impedance of the transmission line is uniformly

50Ω. The relationship between the coupling capacitance and the coupling quality factor,

Qc, is derived in Appendix A.2. From the standpoint of the coupling capacitor, the λ/4
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Figure 2.4: The quarter wave coplanar waveguide resonator. (a) Screen capture of the
graphic design system (GDS) file of one of the hanger resonators used in this work. The
device layout is defined in the GDS and transferred to the physical device in fabrication
(in this case, using photolithography). Further details can be found in Chapter 3. Blue
indicates areas where the superconductor is removed exposing the substrate. White areas
are where superconductor remains. (b) Circuit representation of the capacitively coupled
quarter wave resonator. (c) Equivalent parallel LCR tank circuit.

resonator looks like a short at the far end and can therefore be mapped to an equivalent

LCR tank circuit [22]. We begin by deriving the expression for the new, loaded, resonant

frequency of the combined LCR circuit and coupling circuit. To do this we employ the

method of load lines.

First, we write down the expression for the admittance of the parallel LCR tank circuit

Yr(ω) =
1

Ri
+ j

(
ωC − 1

ωL

)
. (2.36)

We can rewrite this expression in terms of the resonant frequency, ω0 = 1/
√
LC, and the

characteristic impedance of the resonator, Z0 =
√
L/C = ω0L = 1/ω0C, along with the

expression for the quality factor of a parallel LCR resonator [22], Qi = Ri/Z0. Resonators

used in this work were designed to have Z0 = 50Ω, the same as the transmission line, so

I will call both the impedance of the λ/4 resonator and the impedance of the feedline Z0.
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However, this need not necessarily be the case.

Yr(ω) =
1

QiZ0
+ j

1

Z0

(
ω

ω0
− ω0

ω

)
(2.37)

We define the fractional de-tuning from ω0:

δ =
ω − ω0

ω0
(2.38)

allowing us to simplify our expression for the admittance of the tank circuit:

Yr(δ) =
1

Z0

(
1

Qi
+ j2δ

)
. (2.39)

From Eq. 2.39 we have the expression for the impedance of the parallel LCR circuit:

Zr(δ) =
1

Yr(δ)
= Z0

1

1/Qi + 2jδ

1/Qi − j2δ

1/Qi − j2δ

= Z0
1/Qi − j2δ

1/Q2
i + (2δ)2

= Z0
1/Qi − j2δ

1/Q2
i + (2δ)2

Qi

Qi

= Z0
Qi − 2jδQ2

i

1 + (2Qiδ)2
.

(2.40)

We now turn our attention to the impedance of the coupling circuit

Zc(ω) =
Z0

2
− j

1

ωCc
. (2.41)

The impedance of the combined circuit is therefore

ZA(ω, δ) = Zr(δ) + Zc(ω) =
Z0

2
+

Z0Qi

1 + (2Qiδ)2
− j

[
1

ωCc
+

2Z0Q
2
i δ

1 + (2Qiδ)2

]
. (2.42)

Looking at the circuit from the standpoint of node A (Fig. 2.4 (c)), we expect Im[ZA]

to have a zero on resonance. We now solve for new resonant frequency including loading
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from the coupling circuit.

0 = Im[ZA(δ, ω)] =
1

ωCc
+

2Z0Q
2
i δ

1 + (2Qiδ)2
(2.43)

−1

ωCc
=

2Z0Q
2
i δ

1 + (2Qiδ)2

Inverting the expression we have

−ωCc =
1 + (2Qiδ)

2

2Z0Q2
i δ

−ωCcZ0 =
1/Q2

i + 4δ2

2δ

−2Z0Ccωδ =
1

Q2
i

+ 4δ2

Substituting back in for δ = ω/ω0 − 1 we have

−2Z0Ccω

(
ω

ω0
− 1

)
=

1

Q2
i

+ 4

(
ω

ω0
− 1

)2

=
1

Q2
i

+ 4

[(
ω

ω0

)2

− 2
ω

ω0
+ 1

]
.

We now use the definition, Z = 1/ω0C:

−2
Cc

C

ω

ω0

(
ω

ω0
− 1

)
=

1

Q2
i

+ 4

[(
ω

ω0

)2

− 2
ω

ω0
+ 1

]

Dropping the term, 1/Q2
i and making the high-Q approximation.

−2
Cc

C

ω

ω0

(
ω

ω0
− 1

)
= 4

[(
ω

ω0

)2

− 2
ω

ω0
+ 1

]

Gathering like-terms we solve for ω/ω0.

0 =
2Cc

C

[(
ω

ω0

)2

− ω

ω0

]
+ 4

[(
ω

ω0

)2

− 2
ω

ω0
+ 1

]
(2.44)
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Dividing everything by two and gathering like terms we have

0 =

(
Cc

C
+ 2

)(
ω

ω0

)2

−
(
Cc

C
+ 4

)
ω

ω0
+ 2. (2.45)

Applying the quadratic formula we find the roots.

ω

ω0
=

(
Cc
C + 4

)
±

√(
Cc
C + 4

)2

− 8

(
Cc
C + 2

)
2

(
Cc
C + 2

)

=

(
Cc
C + 4

)
± Cc

C

2Cc
C + 4

(2.46)

We take the lower frequency since this is the one that described loading by the coupling

capacitor.

ω

ω0
=

4

2Cc
C + 4

=
1

1 + Cc
2C

(2.47)

We define the new frequency of the coupled system to be

ω′
0 = ω0

(
1

1 + Cc
2C

)
. (2.48)

For the best signal to noise ratio (SNR), we target Qi ≈ Qc such that Q ≈ Qi/2. Qc ∝

1/C2
c (see Appendix A.2 for full expression). As a result, we can make the approximation

Cc ≪ C such that

ω

ω0
≈ 1− Cc

2C
(2.49)

The approximate form of the loaded resonance in the high internal Q, weakly coupled

limit is

ω′
0 = ω0

(
1− Cc

2C

)
. (2.50)

For now, we’re after the expression for transmission across the resonator. The forward
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Figure 2.5: Load lines for resonator (blue) and coupling circuit (yellow). (a) The imaginary
part of the impedance for the resonator and coupler. These intersect at two points. The
higher frequency zero corresponds to the bare cavity resonance. The lower frequency zero
is the loaded frequency of the combined resonator-coupler circuit. The bare frequency of
the quarter wave resonator is indicated by the black dashed line. The analytical expression
for the loaded resonance, Eq. 2.50 , is shown as a gray dotted line. (b) The imaginary
part of the resonator impedance and coupler impedance.

scattering matrix element for a shunt impedance is

S21 =
2

2 + Z0
Z

. (2.51)

To evaluate this expression we need the impedance of the hanger resonator (including the

coupling circuit) in terms of the de-tuning from the new resonance

δ′ =
ω − ω′

0

ω′
0

. (2.52)

Rewriting the expression for the total impedance of the coupling circuit and resonator in

terms of the new fractional de-tuning, δ′, we have

Z(δ′) =
QcZ0

2Qi
(1 + j2δ −Qi). (2.53)

Z0

Z
=

2Qi

Qc

1

1 + j2δ′Qi
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S21 =
1

1 + Qi

Qc

1
1+j2δ′Qi

. (2.54)

We rewrite this expression in terms of the loaded quality factor, Ql,

1

Ql
=

1

Qi
+

1

Qc
. (2.55)

S21 =
Qc(1 + j2δ′Qi)

Qc(1 + j2δ′Qi) +Qi

=
Qc + j2δ′Ql(Qc +Qi)

(Qc +Qi)(1 + j2δ′Ql)

=
Qc/(Qc +Qi) + j2δ′Ql

1 + j2δ′Ql

S21 =
Ql/Qi + j2δ′Ql

1 + j2δ′Ql
(2.56)

S21 is the complex number describing transmission across the resonator. In Fig. 2.6 we

plot this expression for ω′
0/2π = 5 GHz, Qc = 1 × 105, and Qi ranging between 1 × 105

and 1×106 (values representative of the devices studied in this thesis). Fig. 2.6 (a) shows

the amplitude, |S21|, displaying the expected Lorentzian lineshape. We see that the depth

of the resonance gets shallower as Qi decreases. Fig. 2.6 (b) shows the phase, ∠S21. And

in Fig. 2.6 (c) we show the real and imaginary parts of S21, which sweep out a circle in

the complex plane, the diameter of which decreases with Qi.

For the case where Qi = Qc we have Ql = Qi/2 ⇒ Ql/Qi = 1/2, the value of the circle

off resonance is 1, and on resonance is 1
2 . The center of the circle then is located at

xc =
Ql/Qi + 1

2
. (2.57)

Hence, the amplitude and phase are given by [25]

A =

√
(Re[S21]− xc)2 + Im[S21]2

1− xc
and θ = arctan

(
Im[S21]

xc − Re[S21]

)
(2.58)

From Eq. 2.58 and our expression for S21, keeping only first-order terms in Qi and δ
′, we

can write down expressions for amplitude and phase due to a change in δ(1/Q) and δf/f0
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Figure 2.6: Calculated resonator response of a capacitively coupled quarter wave coplanar
waveguide resonator. S21 is the forward scattering matrix element describing transmission
across the resonator. (a) Transmission amplitude as a function of the fractional detuning
from the resonant frequency, δ′ = (ω−ω0)/ω0. (b) Phase as a function of δ′. (c) The real
and imaginary parts of S21 plotted in the complex plane.

[26]

tan θ ≈ θ =
Im[S21]

Re[S21]
≈ −4Qlδ

′ ≡ −4Ql
δω

ω0
(2.59)

δA ≈ 1−A ≈ −2Qlδ

(
1

Q

)
(2.60)

where we have redefined ω0 = ω′
0. For the remainder of this thesis, ω0 = 2πf0 refers to

the resonant frequency of the quarter wave resonator, including the added inductance of

the Al sensor strip. The pair-breaking detector can be readout out by monitoring changes

in the on resonance amplitude or phase. Having derived the change in the amplitude and

phase due to a change in the quasiparticle distribution from a simple circuit model and

the Mattis Bardeen expressions we have a complete model describing the operation of our

detector. In the following chapters we will use this model to understand the response of

our detector to a thermal quasiparticle distribution (Chapter 4) and to radiation emitted

by a blackbody (Chapter 5).

2.4 Antenna physics

We showed in the previous sections that our pair-breaking detector will exhibit a response

in both the resonator amplitude and phase due to a change in the quasiparticle distribution
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Figure 2.7: Josephson-assisted slot antenna. (a) The slot antenna, a large rectangular
cavity in a conducting sheet, is driven by a Josephson junction located at the center
of the slot. (b) Circuit representation of the Josephson junction, accurate for radiation
frequencies above the Al gap (frad > 92 GHz). (c) Efficiency, calculated from Eq. 2.63,
with the radiation impedance simulated in CST Microwave Studio [29].

of the high kinetic inductance sensor strip. There are a number of different quasiparticle

generation mechanisms, however in radio astronomy, the generation mechanism of interest

is absorption of a pair breaking photon. This is when a photon, with energy greater

than twice the superconducting gap of the sensor strip is absorbed, providing sufficient

energy to break a Cooper pair, generating two quasiparticles. First proposed in 2006,

coupling to pair-breaking radiation can by improved by integrating an antenna into the pair

breaking detector [27]. More recently, noise equivalent powers as low as 3 ×10−20 W/
√
Hz

have been demonstrated with antenna-coupled kinetic inductance detectors, designed to

absorb radiation with a frequency around 850 GHz [28]. In this Section, we discuss how a

Josephson junction may be used to improve coupling to incident radiation in an antenna-

coupled kinetic inductance detector.

As demonstrated in [30, 31], typical superconducting qubit structures are antennas,

which resonate at mm-wave frequencies. Further, the authors show that the Josephson

junction, for parameters typical of superconducting qubit devices, provides a reasonable

conjugate match to the radiation impedance, Zrad, which satisfies the condition for maxi-

mal power absorption [30]

Γ =
Zrad − Z∗

J

Zrad + Z∗
J

(2.61)
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where ZJ is the impedance of the Josephson junction. Since we are interested in coupling

to pair-breaking radiation, frad > 2∆/h = 91.8 GHz for Al, we can accurately model

the Josephson junction as a capacitor, CJ in parallel with a resistor, Rn (Fig. 2.7 (b)).

CJ is the capacitance of the Josephson junction, set by the area of the junction and the

thickness of the oxide barrier5. Rn is the normal state resistance of the junction. The

junction impedance is then

ZJ =

(
1

Rn
+ jωCJ

)−1

. (2.62)

The efficiency6 with which the antenna couples to radiation is then defined as

ηopt = 1− |Γ|2. (2.63)

So, by simply tuning the junction’s normal state resistance and capacitance, determined in

fabrication, one can match the junction impedance to the conjugate radiation impedance.

While resonant absorption of pair-breaking radiation [31] is detrimental to superconduct-

ing qubits, the question that prompts the work in the remainder of the first part of this

thesis is: can we leverage the resonant absorption of pair-breaking radiation at a Josephson

junction to develop a new type of quantum sensor?

For this project, we chose to work with a slot antenna (Fig. 2.7 (a)), a long narrow

cavity carved out of a conducting sheet, which will resonantly absorb radiation with wave-

lengths corresponding to the length of the slot. The addition of the Josephson junction,

in the center of the slot, provides a mechanism via which to drive the antenna. Simulating

the radiation impedance in CST Microwave Studio [29], we can calculate from Eq. 2.63 the

expected efficiency for typical junction parameters, shown in Fig. 2.7 (c). On resonance,

the expected efficiency is near unity. In the Chapter 3 we describe design and fabrication

of the detector, as well as the cryogenic measurement apparatus and room temperature

electronics. In Chapter 4 we look at detector response to a thermal quasiparticle distribu-

5Al-AlOx-Al junctions, for the parameters typically used in superconducting qubits have capacitance
per unit area 50− 100 fF/µm2 [32].

6Sometimes referred to as coupling efficiency or optical efficiency within this thesis
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tion, before looking at response to radiation emitted by a blackbody source in Chapter 5.

Finally, we look at the spectral response due to radiation emitted by a Josephson emitter

in Chapter 6.
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Chapter 3

Experimental methods

We begin this chapter by discussing the layout and design of the Josephson mm-wave

detector, before going through the fabrication details of such a device. We then move

on to discuss the cryogenic measurement apparatus as well as the room temperature

electronics used for measurement. Finally, we conclude with a note discussing measures

taken to eradicate ground loops, specifically for the measurements of the detector noise.

3.1 Layout and fabrication

The detector consists of a quarter-wave coplanar waveguide resonator capacitively coupled

to a transmission line. These devices have a hybrid design: the ground plane, the center

conductor of the resonator, and transmission line are all made of Nb, while the majority

of the kinetic inductance is due to two Al nanowires1. The Al volume is located at the

shorted end of the CPW resonator, where the current is the largest, in order to maximize

the response due to a change in the kinetic inductance.

The slot antenna, designed to improve coupling to pair-breaking radiation, is embedded

at the current anti-node (shown in Fig. 3.1). Half of the slot antenna exists in the

space between the two Al nanowires, the other half is carved out of the ground plane.

A Josephson junction, located in the center of the slot antenna, is used to match the

1sometimes referred to as the sensor strip, the high kinetic inductance volume, or the Al volume
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Figure 3.1: Sample layout. (a) Screen capture of the device GDS, showing six resonators
capacitively coupled to the central feedline. White indicates areas where the supercon-
ducting film, in this case Nb, remains. Blue indicates areas where the superconductor was
etched away, exposing the silicon substrate. (b) Optical image of a single resonator. (c)
Scanning electron micrograph showing the Al sensor strip and slot antenna (false-color
yellow) at the current anti-node of the CPW resonator. The Josephson junction, located
at the center of the slot antenna, is shown, false-color, in magenta.

conjugate radiation impedance (the condition for maximal power absorption), allowing

for the resonant transduction of photons to quasiparticles. Quasiparticles generated by

the absorption of pair-breaking radiation at the Josephson junction will be confined to the

Al sensor strip due to gap engineering. A lower gap material, in this case Al, is chosen to

create a quasiparticle moat. Quasiparticles at the Josephson junction will quickly scatter

down to the Al gap edge where they will have insufficient energy to diffuse into the higher

gap Nb ground plane and center trace.

Each sample consisted of six λ/4 coplanar waveguide resonators capacitively coupled

to a central feedline (Fig. 3.1). Resonators had a central conductor width, wr = 10µm

and gap width gr = 6µm, and were designed to have a 50Ω impedance and to resonate

between 4 - 6 GHz. Samples were fabricated on 3 inch prime-grade intrinsic FZ Si (100)

wafers with resistivity greater than 10 kΩ-cm. A 40 nm thick Nb base layer was deposited

via magnetron sputtering immediately following exposure to dilute (2%) hydrofluoric acid

for 1 minute to remove the native silicon oxide.
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Features with critical size greater than 2 µm, which includes the coplanar waveguide

resonators, transmission line, bond pads, test structures and portions of the slot antenna,

were patterned via optical lithography using a Heidelberg DWL 66+ direct-write laser

lithography tool. Prior to exposure with the direct-write lithography system, samples

were spin-coated with AZ MiR 703 photoresist. Post-exposure, samples were developed in

MF CD-26 for 1 minute then immediately quenched in deionized water for 1 minute and

blow-dried with N2.

To transfer the pattern from the photoresist mask to the sample, samples were then dry-

etched using a Plasma-Therm 770 inductively-coupled plasma (ICP) reactive-ion etcher

(RIE). The etch chemistry was chlorine-based, consisting of the following gases (flow rates):

BCl3 (18 sccm), Cl2 (9 sccm) and Ar (18 sccm) with a total pressure of 40 mTorr. An ICP

power of 300 W and a RIE power of 50 W were used. An etch rate of 50 nm per minute for

Nb was determined by par-etching a 90 nm Nb film, then profiling the step height using

a KLA-Tencor P7 profilometer. Subsequent to etch calibration, samples were etched for 2

minutes and 15 seconds. Immediately prior to etching, the etch chamber was conditioned

by performing a 5 minute O2-based clean, followed by a 5 minute pre-seed utilizing the

same etch chemistry as the Nb etch. Post-etch, AZ MiR 703 photoresist was removed

from the sample via a solvent-clean consisting of submersion in Microposit Remover 1165

(NMP) at 80 C for 15 min, followed by sonication in Microposit Remover 1165 for 3 min,

sonication in IPA for 3 min, and sonication in deionized water for 3 min. Finally, samples

were blow-dried with N2.

Fabrication of the high-kinetic inductance Al nanowire and Josephson junction required

patterning via electron-beam lithography (EBL). A resist bilayer consisting of MMA (8.5)

EL 11 (with an approximate thickness of 680 nm) underneath 950 PMMAA3 (approximate

thickness of 170 nm) was exposed using an Elionix ELS-G100 100 keV EBL system. Post-

exposure, samples were developed in a mixture of DI:IPA (100 mL:300 mL) maintained at

a temperature of 2 C using an ice bath. Samples were immediately dried with N2 following

development.
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The high-kinetic inductance nanowires, 100 nm wide and 125 µm long, and the Joseph-

son junctions were deposited in the same step via double-angle evaporation in an electron-

beam evaporator. Prior to deposition but subsequent to loading in the vacuum chamber,

samples were subject to 12 seconds of ion milling to remove any native oxide on the Nb

base layers, allowing for galvanic contact between the to-be deposited Al layer and the

existing Nb film. The bottom electrode of the Josephson junction was formed by a 29.0

nm-thick Al film deposited at an angle of -35◦ with an approximate deposition rate of 2 Å

per second. This was followed by an in situ oxidation at 130 mT for 2 minutes to form the

insulating barrier. Finally, the top-electrode of the Josephson junction was formed by a

41.9 nm Al film deposited normal to the surface of the sample, again with an approximate

deposition rate of 2 Å per second. Subsequent to evaporation the films were lifted off in

Microposit Remover 1165 at 80 C. Once the metal film had cleared the sample surface,

samples were transferred to a clean volume of Microposit Remover 1165 and sonicated for

3 minutes, before sonication in IPA for 3 minutes. Finally, samples were blow-dried with

N2.

Prior to being cooled for characterization, samples were diced using a Disco DAD3221

automatic dicing saw. Samples were encapsulated in a protective coating of SPR 955

photoresist prior to dicing. This coating was removed after dicing by rinsing with acetone

followed by IPA and dried using a nitrogen gun. Dies were packaged in an Al or Au-coated

Cu sample enclosure. Al wirebonds placed using a West Bond 7476E-79 Al wedge wire

bonder were used to make contact between the on-chip bond pads and the copper traces

of the Al sample enclosure.

3.2 Cryogenic measurement

Samples were mounted to the mixing chamber plate of a Leiden cryogen-free dilution

refrigerator and cooled to a temperature of approximately 18 mK. Samples discussed in this

thesis were either mounted in a Al sample enclosure, inside a light-tight Cryoperm2 can,

2Sometimes referred to as mu-metal
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Figure 3.2: Cartoon of the cryostat showing the locations of the sample subject to illumi-
nation by the blackbody and the dark reference sample.

or in the case of the blackbody experiment, they were mounted in a Au-coated Cu sample

box thermalized to the top of the mixing plate, directly underneath the blackbody emitter.

To absorb stray photons from higher temperature stages, the exchange plate shield was

coated with Stycast 1266 (parts A and B), mixed with silica powder and carbon black.

Silicon carbide crystals were used to make the interior surface of the can non-uniform. A

second coat of the Stycast mixture was then applied to hold the silicon carbide crystals

in place. This is the same mixture used to coat the inside of the light-tight µ-metal can.

The mu-metal can is designed to have a light-tight lid. SubMiniature A (SMA) bulkhead

feedthroughs are used to transfer signals into the light-tight can. Indium is used on each

of the mating surfaces to minimize light leakage around the SMAs. Inside the can, EZ

form, hand-formable non-magnetic SMA cables are used to transfer measurement signals

to the sample box.

Two room temperature electronics setups were used for data acquisition. The response

of the resonator, from which we extracted Qi and f0, was measured in transmission us-

ing an Agilent N5230A vector network analyzer (VNA). Noise measurements were done
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via heterodyne detection. The measurement signal was generated using single-sideband

mixing (Fig. 3.3 (a)). Arbitrary waveform generation and demodulation were done us-

ing a Quantum Machines3 OPX+. For measurement tones synthesized using sideband

mixing, base-band pulses generated from the AWG were mixed with a microwave carrier

frequency4 to produce a tone at the resonator frequency5. Upon returning from the cryo-

stat the signal was mixed back to base-band using a copy of the LO. Further demodulation

was done in software.

In either case the measurement chain was the same after pulse synthesis (Fig. 3.3

(b)). The measurement tone first passed through variable room temperature attenuation,

20 dB of attenuation at the 3 K stage, then 40 dB of attenuation at the 20 mK stage of

the cryostat. Low-pass filters and high-frequency eccosorb filters were used at the device

to reduce light leakage from higher temperature stages. At the output side of the device

the signal passes through three cryogenic isolators before leaving the millikelvin stage. A

high-electron mobility transistor (HEMT) at 3 K amplified the signal prior to leaving the

fridge. Additional amplification was used at room temperature before the signal either

returned to the VNA or was demodulated to base-band in the case of the heterodyne

setup. Radiall microwave switches, modified for use in a cryogenic environment, were

used to increase measurement throughput.

To be discussed in the following Chapters, measurements of the amplitude and phase

noise of the detector as a function of either ambient temperature or incident radiation

from a blackbody emitter were used to probe the detector response. Measurement of

these quantities required reduction spurious noise sources (for instance, 60 Hz noise),

primarily achieved through the elimination of ground loops in the experimental setup.

Outer DC blocks were used on all lines connecting the cryostat to the fast-electronics

rack. An isolation transformer was used to break the ground connection between the

quantum machines OPX+ and the power strip in the rack. Care was taken to eliminate

all other ground connections from the top of the fridge. Conductive KF clamps and o-rings,

3Sometimes called the AWG (arbitrary waveform generator)
4Also referred to as the local oscillator or LO
5A mathematical description of digital mixing is given in Appendix A.3.
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Figure 3.3: Experimental measurement setup. Circuit symbols are defined on the right.
(a) Heterodyne setup. (b) Wiring diagram. Colored dashed lines indicate to which tem-
perature stage components are thermalized.
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connecting the top of the cryostat to the gas handling unit were replaced with insulating

ones. Cabling connecting the in-built heaters and fridge thermometry resulted in an ohmic

connection between the cryostat and the gas handling system, resulting in myriad ground

loops. Thus, after setting up each scan, the fridge thermometry was disconnected from the

cryostat for the duration of the scan. Further, a ‘battery box’, consisting of a 9 V battery,

a voltage regulator, and a potentiometer were used to provide current to the blackbody

heater, further eliminating an ohmic connection to the gas handling unit.

Described in the following chapters, data taken with this apparatus and measurement

scheme was used to measure the noise equivalent power of the detector, from which the

detector efficiency is estimated.
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Chapter 4

Response to a thermal

quasiparticle distribution

We’ve discussed the operating principle of our detector, design considerations, and the

experimental apparatus. What remains is to demonstrate that we understand the response

of the detector and to quantify the detector performance. We begin by looking at the

detector response to a thermal quasiparticle population. In this case, there are essentially

no free parameters. As such, we can use this as an opportunity to measure the kinetic

inductance fraction. In this Chapter, we use the Mattis Bardeen integrals for a thermal

distribution to calculate the expected detector response using Eq. 2.22 and Eq. 2.35.

We then compare these expressions to the measured δ(1/Q) and δf/f0 of our device for

bath temperatures ranging from 18 mK to 300 mK. From the measured quality factor

and resonant frequency as a function of temperature, we extract the quasiparticle density

and compare with the analytical expression. We measure the spectrum of quasiparticle

number fluctuations as an independent measurement of the number of quasiparticles.

4.1 A thermal quasiparticle distribution

As shown in Chapter 2, the detector response to a change in the quasiparticle distribution

is described by a change in the complex conductivity, the real and imaginary parts of
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which are given by the Mattis Bardeen integrals (Eq. 2.9 and Eq. 2.10). With these

analytical expressions in hand, we can measure the internal quality factor and resonant

frequency as we vary the temperature and compare the results of evaluating Eq. 2.22 and

Eq. 2.35 using Eq. 2.9 and Eq. 2.10.

4.1.1 The spectrum of quasiparticle number fluctuations

The number of quasiparticles in a superconductor at thermal equilibrium will fluctuate

about the mean value, Nqp. This generation-recombination noise is a limiting source

of noise for the pair-breaking detector [10, 11]. Wilson and Prober developed a model

describing the dynamics of these quasiparticle fluctuations, using a master equation ap-

proach [16], and in doing so derived expressions for the autocorrelation function and the

variance of these fluctuations. With these results we can compute the power spectral

density of quasiparticle number fluctuations using the Wiener-Khinchin theorem [10, 33].

The Wiener-Khinchin theorem relates the autocorrelation to the power spectral density

via the Fourier transform:

Sx(ω) = 2

∫ ∞

−∞
rxx(t)e

−iωtdt (4.1)

where rxx(t) is the autocorrelation function and Sx(ω) is the power spectral density (ω =

2πf). Using the result from Wilson and Prober,

rxx(t) = σ2e−|t|/τqp (4.2)
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where τqp is the limiting timescale, in this case the quasiparticle recombination time and

σ2 = Nqp is the variance [16].

SN (ω) = 2Nqp

∫ ∞

−∞
e−|t|/τqpe−iωtdt

= 2Nqp

[ ∫ 0

−∞
et(1/τqp−iω)dt+

∫ ∞

0
e−t(1/τqp+iω)dt

]
= 2Nqp

[
1

1/τqp − iω
e1/τqp−iω

∣∣∣∣0
−∞

+
1

1/τqp + iω
e1/τqp+iω

∣∣∣∣∞
0

]
= 2Nqp

[
1

1/τqp − iω
+

1

1/τqp + iω

]
=

4Nqpτqp
1 + (ωτqp)2

(4.3)

SN (f) =
Nqpτqp

1 + (2πfτqp)2
. (4.4)

Looking at Eq. 4.4 we can see that the power spectral density will have a Lorentzian

lineshape with the knee frequency set by the quasiparticle lifetime. The spectrum of quasi-

particle number fluctuations can be related to the experimental observables, amplitude and

phase in the following way [34]:

SA(f) =
SN (f)

1 + (2πfτr)2

(
dA

dNqp

)2

(4.5)

Sθ(f) =
SN (f)

1 + (2πfτr)2

(
dθ

dNqp

)2

. (4.6)

Also of interest is the cross-spectral density, Sθ,A(f), which can similarly be related to

SN (f):

Sθ,A(f) =
SN (f)

1 + (2πfτr)2

(
dθ

dNqp

dA

dNqp

)
. (4.7)

The cross-spectrum looks at correlations between two signals, effectively averaging away

uncorrelated noise in the signal, for instance due to the measurement apparatus. As result

the signal may be clearer in the cross-spectrum than in the amplitude or phase spectrum

alone. Because of this, we fit to the cross-spectrum to extract the quasiparticle lifetime.

Later in this Chapter we will use Eq. 4.5 - 4.7 to extract the quasiparticle lifetime and



43

number of quasiparticles for a thermal quasiparticle distribution.

4.2 Detector response to elevated temperature

To look at the response of our detector to a thermal quasiparticle distribution we heat

the cryostat stage to which our sample is mounted. The data shown in this Chapter is for

a nominally dark sample mounted inside a light tight Cryoperm canister, thermalized to

the mixing chamber plate of a Leiden cryogen-free dilution refrigerator. During normal

operation this stage sits at a base temperature of about 18 mK, but can be heated to more

than 300 mK while continuing to circulate the He3/He4 mixture. Transmission across the

resonator is measured with a vector network analyzer. The wiring diagram is equivalent

to that shown in Fig. 3.3. Monitoring the internal quality factor of the resonator as a

function of microwave readout power, we see that the quality factor saturates at low and

high powers, characteristic of a device limited by two level system (TLS) losses [35]. At

very high readout powers, we start to see bifurcation due to the nonlinear inductance of

the nanowire. As such, we use highest readout power prior to bifurcation.

Fitting a circle to real and imaginary parts of S21 in the complex plane we extract the

coupling quality factor, the internal quality factor, and the resonant frequency [24, 36].

The data and resulting fits are shown in Fig. 4.1. Fig. 4.2 shows Qi, δf/f0, and δ(1/Qi)

extracted from fits. The dotted black line in Fig. 4.2 (a) is the predicted value for Qi,

given by Eq. 2.20, evaluated using Eq. 2.9 and Eq. 2.10. We see that the data agrees with

the Mattis Bardeen prediction for high temperatures, but saturates at low temperature.

In actuality, there are numerous loss channels that may limit the measured internal quality

factor, including TLS losses and radiation from higher temperature stages. These quality

factors add in parallel

1

Qi,meas
=

1

Qi
+

1

QTLS
+

1

Qrad
+ ... (4.8)

Hence, the quality factor, at which our measured Q saturates, will be the parallel combi-



44

Figure 4.1: Detector response to elevated bath temperatures. Data, taken with a vector
network analyzer, is shown along with the fits from which Qi and f0 are extracted. The
density of data points is reduced to show the quality of the fit. (a) Amplitude response to
elevated temperature. The change in frequency is evident as a shift down in the Lorentzian
dip. The decrease in the depth of the Lorentzian indicates a decrease in the internal quality
factor. (b) Phase, the angle between the real and imaginary parts of S21. (c) The real and
imaginary parts of S21 plotted in the complex plane. The decrease in the internal quality
factor with elevated temperature is apparent as a reduction in the diameter of the circle
in the complex plane.

nation of these additional loss channels

1

Qi,sat
=

1

QTLS
+

1

Qrad
+ ... (4.9)

Our measured internal quality factor will then be the sum of Qi,sat and the Qi derived

from the Mattis Bardeen expressions [10]

1

Qi,meas
=

1

Qi
+

1

Qi,sat
. (4.10)

Adding the maximummeasured internal quality factor, Qi,max in parallel with the expected

quasiparticle-limited Qi we achieve good agreement with the data. We similarly compute

the expected change in loss (Eq. 2.22) and the fractional frequency shift (Eq. 2.35), Fig.

4.2 (b) and (c), finding reasonable agreement with measured data.

Noting the dependence on e−∆/kBT we can relate Eq. 2.20 to the reduced quasiparticle
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Figure 4.2: Change in the internal quality factor and fractional frequency shift extracted
from fits as a function of temperature. (a) Internal quality factor as a function of tempera-
ture. The black dotted line shows the expected value from the circuit model of the detector
(Eq. 2.20). The blue solid line is the result of adding the maximum internal quality factor
in parallel. The data diverges from the Mattis Bardeen prediction as other loss channels
begin to dominate at lower temperatures. (b) Measured change in the resonator loss. The
solid yellow line shows the predicted value (Eq. 2.22) (c) Measured fractional frequency
shift. The solid green line is the predicted response to elevated temperature (Eq. 2.35).

density, xqp = nqp/ncp ∝ e−∆/kBT . Following the notation of [9] we define ξ = hf/2kBT .

Qi =
2

αβ

σ2
σ1

=
2

αβ

σ2(T )/σn
σ1(T )/σn

=
2

αβ

π∆
hf

(
1−

√
2πkBT

∆ e−∆/kBT−2e−∆/kBT e−ξI0(ξ)

)
4∆
hf e

−∆/kBT sinh(ξ)K0(ξ)
.

(4.11)

Solving for x = e−∆/kBT ,

Q
2αβ

π
(x sinh(ξ)K0(ξ)) = 1−

√
2πkBT

∆
x− 2xe−ξI0(ξ)

x =

[
2αβ

π
Qi sinh(ξ)K0(ξ) +

√
2πkBT

∆
+ 2e−ξIo(ξ)

]−1

xqp(Qi, T ) =
2N0

ncp

√
2πkBT∆

[
2αβ

π
Qi sinh(ξ)K0(ξ) +

√
2πkBT

∆
+ 2e−ξIo(ξ)

]−1

. (4.12)

Recall that N0 = 1.72× 1010 eV−1 µm−3 is the single spin density of states at the Fermi
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Figure 4.3: Reduced quasiparticle density, xqp, extracted from the internal quality factor.
(a) xqp extracted from the internal quality factor as a function of device temperature.
The red dashed line is the value expected from theory. We find reasonable agreement for
higher temperatures. For lower temperatures, the reduced quasiparticle density saturates,
a result of the saturation in Qi observed in Fig. 4.2 (a). If we account for this saturation
(the black trace), we find reasonable agreement for all temperatures.(b) xqp extracted from
Qi plotted versus the expected value (Eq. 2.3).

level [18] and ncp = 4×106 µm−3 is the density of Cooper pairs [37]. The values of N0 and

ncp given here are for aluminum. Assuming that we trust the fridge thermometry, this

allows us to estimate the reduced quasiparticle density from the measured internal quality

factor (shown in Fig. 4.3). We can independently measure the spectrum of quasiparticle

fluctuations, from which we can extract the quasiparticle number, Nqp.

4.2.1 Amplitude and phase responsivity

The amplitude responsivity, dA/dNqp, and phase responsivity, dθ/dNqp describe the change

in the amplitude or phase signal due to a change in the number of quasiparticles. Starting

from Eq. 2.59 and Eq. 2.60 we have

dA

dNqp
= −2Ql

d(1/Qi)

dNqp
(4.13)

dθ

dNqp
= −4Ql

df/f0
dNqp

(4.14)
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Using Eq. 2.22 and Eq. 2.35 along with Nqp = nqpV and recalling that we had previously

made the approximation |σ| ≈ σ2

dA

dNqp
= −2Ql

d(1/Qi)

dNqp
= −2Ql

αβ

2

dσ1/σ2
dNqp

= −αβQl

|σ|V
dσ1
dnqp

(4.15)

dθ

dNqp
= −4Ql

αβ

4

dσ2/σ2
dNqp

= −αβQl

|σ|V
dσ2
dnqp

(4.16)

we relate the amplitude and phase responsivity to the complex conductivity. These deriva-

tives can be evaluated for a thermal quasiparticle distribution [9]

1

σn

dσ1
dnqp

=
1

N0hf

√
2∆

πkBT
sinh

(
hf

2kBT

)
K0

(
hf

2kBT

)
(4.17)

1

σn

dσ2
dnqp

= − π

2N0hf

(
1 +

√
2∆

πkBT
e−hf/2kBT I0

(
hf

2kBT

))
(4.18)

allowing us to evaluate Eq. 4.15 and Eq. 4.16. Converting the measured temperature to

number of quasiparticles using Eq. 2.2 and plotting our measured δ(1/Qi) and δf/f0, we

see that the data falls onto a line. Using the slope extracted from a linear fit along with

Eq. 4.13 and Eq. 4.14 we compute the amplitude and phase responsivity (Fig. 4.4) [10].

The amplitude and phase responsivity will allow us to convert the measured amplitude

and phase noise spectra to the spectrum of quasiparticle number fluctuations in the next

section.

4.3 Measurement of detector noise under dark conditions

4.3.1 Measurement of the quasiparticle lifetime and density

To measure the spectrum of quasiparticle number fluctuations we first require either the

amplitude power spectral density (PSD), the phase power spectral density, or the cross-

spectral density (CSD). These can be computed from a time series of amplitude and

phase fluctuations via the Fourier transform. Time series data was acquired using the

heterodyne setup described in Chapter 3. For each temperature, a frequency sweep of
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Figure 4.4: Amplitude and phase responsivity. (a) The change in resonator loss, δ(1/Qi),
as a function of the number of quasiparticles, Nqp. The linear fit gives the change in loss
due to a change in the number of quasiparticles, from which the amplitude responsivity
can be computed. (b) The change in the fractional frequency shift as a function of the
number of quasiparticles. The phase responsivity can be calculated from the slope of
the linear fit. (c) The amplitude responsivity computed using Eq. 4.13. (d) The phase
responsivity computed using Eq. 4.14.
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Figure 4.5: Power spectral densities for varying device temperature (indicated by the line
color, referenced to the colorbar). (a) Amplitude power spectral density. (b) Phase power
spectral density. (c) Amplitude-phase cross spectral density.

the resonance was performed, in order to extract the temperature-dependent resonant

frequency. The amplitude of the measurement signal was chosen to match the readout

power used when acquiring the vector network analyzer data in Section 4.2. Then the

timeseries was acquired by repeatedly reading out on resonance, integrating the signal for

10 µs, with no delay between measurement. Off-resonant measurements (also 10 µs) were

interleaved with the on-resonant measurements. This was repeated 10,000 times to form

a single 0.2 s time series. This was repeated to acquire 1,000 time series. The amplitude

PSD, phase PSD, and CSD were computed separately for each of the 1,000 time series.

The resulting 1,000 amplitude PSDs were then averaged together. The same was done

for the phase PSD and CSD. Finally, a boxcar average was applied to the data [38]. The

resulting amplitude PSD, phase PSD and CSD are shown in Fig. 4.5.

At high temperatures, a clear Lorentzian line-shape is present, with the knee frequency

moving to higher frequencies as temperature increases, which is what we expect for a

spectrum where the dominant timescale is the quasiparticle lifetime. The low temperature

spectra show a 1/f -like dependence at low frequencies. We convert the amplitude and

phase PSDs and the cross spectrum to the spectrum of quasiparticle number fluctuations

using Eq. 4.5 - Eq. 4.7 along with the amplitude and phase responsivities measured in

Section 4.2 and the resonator ring time, τr = Ql/πf0, computed from the data in Section

4.2 (Fig. 4.6).

Recall from Chapter 2, Eq. 2.5, that we expect the product of the quasiparticle lifetime
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Figure 4.6: Resonator ring down time.

Figure 4.7: Spectrum of quasiparticle fluctuations, calculated from the cross-spectral den-
sity using Eq. 4.7. (a) The number of quasiparticles, Nqp derived from the amplitude of a
Lorentzian fit to the spectrum of quasiparticle fluctuations, SN (f). The grey dashed line
is the analytical expression, Eq. 2.2. (b) The quasiparticle lifetime extracted from a fit
to SN (f). The grey dashed line is the analytical expression given by Eq. 2.4. We find a
significantly lower quasiparticle lifetime than expected, due to trapping. (c) The spectrum
of quasiparticle number fluctuations, derived from the cross spectral density from Eq. 4.7,
for various device temperatures. While data was taken for lower temperatures, significant
1/f noise at lower temperatures made it difficult to reliably fit to a Lorentzian. As a
result, lower temperatures are excluded here.
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Figure 4.8: (a) Reduced quasiparticle density, xqp as a function of device temperature.
The open circles are xqp extracted from fits to the internal quality factor (see Fig. 4.3).
The colored circles are xqp = NqpV/ncp, extracted by converting the phase power spectral
density to the spectrum of quasiparticle fluctuations, SN (f) (Eq. 4.4), and fitting to a
Lorentzian. The black line is the approximate analytical expression [37] for the reduced
quasiparticle density. (b) The product, Nqpτqp should be independent of temperature (grey
dashed line). However, using Nqp and τqp extracted from the spectrum of quasiparticle
fluctuations, we find a significantly lower value. The addition of a 20 µs trapping time
(consistent with [39, 40]), gives reasonable agreement with data.

and the number of quasiparticles to be constant for a thermal quasiparticle distribution.

We can check this, using Nqp and τqp extracted from Lorentzian fits to the spectrum of

quasiparticle fluctuations. For our device geometry, we expect Nqpτqp ≈ 0.165, however,

we find something significantly lower (Fig. 4.8). This is due to the fact that the quasi-

particle lifetime saturates at a much shorter timescale than expected. This is likely due

to quasiparticle trapping. Trapping rates of (17.6µs)−1 have been measured for devices

in our lab [39], comparable to those reported by other groups [40]. Adding the trapping

time in parallel with the predicted quasiparticle recombination time, Eq. 2.4

1

τ effqp
=

1

τqp
+

1

τtrap
(4.19)

we define an effective quasiparticle recombination time that describes the characteristic

timescale extracted from fits. The addition of trapping results in reasonable agreement

with the data.
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Having investigated the detector response to a thermal quasiparticle distribution, we

move to calibrate the detector by looking at the response to a known photon flux emitted

by a blackbody source in Chapter 5.
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Chapter 5

Calibration with a blackbody

source

We need to quantify the sensitivity of our detector to electromagnetic radiation in order

to compare the performance with other detector designs. There are two quantities which

can be used to describe detector performance:

• Noise equivalent power (NEP): the incident power which can be detected with a

signal to noise ratio of one for a post-detection bandwidth of 1 Hz.

• Optical efficiency (ηopt): the efficiency with which the detector absorbs incident

photons.

Both quantities can be measured by looking at the response of the detector to a source

with a known radiation frequency and power. Blackbody radiators are commonly used for

this type of calibration ([23, 28, 41–46]). We begin by discussing contributions to the noise

equivalent power for our system, before giving details of the blackbody apparatus. We

measure the experimental noise equivalent power, varying the incident radiation power.

Taking the value of the NEP for a single frequency, f < 1/2πτqp and plotting as a function

of incident power we compare with the predicted background-limited NEP. We then go

on to calculate an NEP using noise spectra measured on the dark device (see Chapter
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4), using the calculated frequency-dependent optical efficiency, averaged over a frequency

band centered on the slot antenna resonance.

5.1 Background-limited Noise Equivalent Power

Discussing the contributions to the background-limited noise equivalent power of a pair-

breaking detector we follow the work of [10, 23, 45]. To be careful about the distinguishing

between power incident to the detector and power absorbed by the detector throughout

this discussion, we define them explicitly here:

• Incident power1:

Ps =

∫
S(f, T )df (5.1)

where S(f, T ) is the blackbody spectral density. A derivation of S(f, T ) = hf

ehf/kBT−1

for our experimental apparatus is given in the following Section.

• Power absorbed by the detector:

Pabs = Ps

∫
ηopt(f)df =

∫
ηopt(f)S(f, T )df (5.2)

where ηopt(f) is the frequency dependent optical efficiency.

A derivation of each of these quantities, specific to our experimental setup is given in the

following section.

A detector is considered background-limited if it is limited by the signal-to-noise ratio

of the source [45]. In the case where the detector is subjected to radiation emitted by a

blackbody, this corresponds to a detector sensitivity limited by fluctuations in the random

arrival rate of photons at the detector, photon shot noise2 (s.n.).

NEP2
s.n. =

∫
2
S(f, T )hf

ηopt
df (5.3)

1This quantity is similar to the power emitted by the blackbody source, however, our expression for
S(f, T ) takes into account the effective sensing area of the detector and the fact that the detector is only
sensitive to a single polarization of radiation.

2Some sources refer to this term as NEPPoisson [23, 45]
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There will be a correction to Eq. 5.3 to account for photon bunching3 (b.c.).

NEP2
b.c. =

∫
2S(f, T )

hf

ehf/kBT − 1
df (5.4)

This term is negligible for the powers accessed in this work. Finally, a pair-breaking detec-

tor, which monitors changes in the quasiparticle distribution of a superconducting volume,

will further be limited by quasiparticle number fluctuations or generation-recombination

noise (g-r) [47].

NEP2
g-r =

∫
2∆

S(f, T )

ηoptηpb
df (5.5)

where ηpb ≈ 0.69 is the pair-breaking efficiency [48]. The total background limited noise

equivalent power will be the sum of these contributions in quadrature.

NEP2
blip =

∫
2S(f, T )hf

ηopt︸ ︷︷ ︸
photon shot noise

df +

∫
2S(f, T )hf

ehf/kBT − 1︸ ︷︷ ︸
bunching corr.

df +

∫
2∆S(f, T )

ηoptηpb︸ ︷︷ ︸
generation-recombination

df (5.6)

Our experimental setup does not include filters between the blackbody source and the

detector to confine radiation to a narrow frequency band [23]. As a result, we leave

each equation as an integral involving the frequency dependent optical efficiency and the

emitted power per unit frequency.

5.2 Blackbody construction

When designing the blackbody apparatus, there are a number of practical considerations

we must to take into account.

• We would like to heat the blackbody to high enough temperature such that the

detector becomes photon-limited (i.e. photon shot noise is the dominant contribution

to Eq. 5.6).

• We should be able to heat the blackbody to sufficiently high temperatures without

3Some sources refer to this term as NEPwave
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affecting the fridge operation. That is, we need to ensure that the detector response

is due solely to incident radiation from the blackbody source, not spurious heating

effects.

• We would like to limit the arrival of photons from higher temperature stages at the

detector.

• Preferably, the time constant for the blackbody to settle at a temperature aught to

be short, minutes, at most.

In this section, we address each of these design considerations before giving details of

the experimental blackbody apparatus. In order to estimate expected contributions to the

noise equivalent power, we must first estimate the power emitted by the blackbody source,

Ps, and the power absorbed by the detector, Prad.

5.2.1 Power emitted by the blackbody

To understand the response of our detector to incident power from the blackbody source,

we must calculate the power emitted by the blackbody. We start from the Planck spectrum

B(f) =
2hf3

c2
1

ehf/kBT − 1
. (5.7)

We can calculate the power emitted by the blackbody, Ps, by integrating over the radiation

frequency, effective sensing area of the detector, A(f), and the solid angle, Ω

Ps =
1

2

∫ ∫
B(f)A(f)dΩdf. (5.8)

Note the additional factor of one half to account for the fact that our detector will only

absorb a single radiation polarization. If filters were used in the the blackbody apparatus,

the frequency response of the filters would need to be included in the integrand as well
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[45]. The effective sensing area of the detector is

A =
λ2

4π
=

c2

4πf2
. (5.9)

The blackbody apparatus was designed with a reflective sample enclosure and chimney,

allowing us to assume immersion in a blackbody. Hence the solid angle will be that of a

sphere. The integral in Eq. 5.8 is then

Ps =
1

2

∫ ∫ θ=π

θ=0

∫ ϕ=2π

ϕ=0

2hf3

c2
1

ehf/kBT − 1

c2

4πf2
sin θdfdθdϕ (5.10)

Ps =

∫
hf

ehf/kBT − 1
df =

∫
S(f, T )df. (5.11)

Note the temperature dependence as well as the frequency dependence. Evaluating Eq.

5.11 for our measured blackbody temperature and integrating from twice the Al gap edge,

we calculate the power emitted by the blackbody source.

5.2.2 Power absorbed by the detector

We can extend this calculation to estimate the power absorbed by the detector, Pabs. To

do this, we must include the frequency-dependent efficiency, ηopt(f) [30]

Pabs = Ps

∫
ηopt(f)df =

∫
hf

ehf/kBT − 1
ηopt(f)df. (5.12)

Using the frequency-dependent radiation impedance simulated in CST Microwave Studio

[29], we can calculate the coupling efficiency (see Chapter 2 for details). From this, we can

estimate Pabs. The emitted blackbody spectrum as a function of radiation frequency is

shown in Fig. 5.1 (a), along with the simulated efficiency, ηopt(f). The absorbed spectral

density is shown in Fig. 5.1 (b). We integrate the curve for each of temperature to

calculate Ps and Pabs (shown in Fig. 5.2). As expected, the absorbed power is lower

than the emitted power. To know the exact absorbed power we require a measurement

of the optical efficiency. The normalized cumulative absorbed power is shown in Fig. 5.2
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Figure 5.1: Blackbody spectrum. (a) The blackbody spectral density is shown as a func-
tion of radiation frequency for the range of temperatures accessed in this experiment. The
simulated efficiency is plotted in gray (right y-axis). (b) The estimated absorbed spectral
density as a function of radiation frequency, the result of multiplying the simulated effi-
ciency with the blackbody spectrum for each temperature.

(b), calculated by varying the upper limit of the integrand in Eq. 5.12. We see that, as

expected, most of the radiation is absorbed in a relatively narrow band centered around

the antenna frequency (fant ≈ 140 GHz). These results will be used in the calculation of

the detector responsivity in the following sections.

5.2.3 Expected contributions to NEP

Having calculated the power emitted by the blackbody source, we can estimate contribu-

tions to the noise equivalent power. This will inform what range of operation temperatures

to target when designing the blackbody emitter. Fig. 5.3 (a) shows the contributions to

NEP due to radiation from the blackbody source for blackbody temperatures ranging be-

tween 100 mK and 5 K. We see that at low temperatures generation-recombination noise,

due to quasiparticles generated by the absorption of radiation from the blackbody, will

dominate. However, starting around 1 K, the photon shot noise becomes the dominant

source of noise (Fig. 5.3 (b) shows the calculated contributions to NEP for blackbody tem-

peratures ranging between 1 K and 5 K). In order to access the photon-limited regime,

we would like to be able to heat the blackbody to a few Kelvin without disrupting normal

operation of the cryostat. For our design, we mount the blackbody to the exchange plate
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Figure 5.2: Calculated blackbody power. (a) Calculated emitted (circles) and absorbed
(squares) power. The result of integrating the curves shown in Fig. 5.1 (a) and (b), respec-
tively. (b) The cumulative absorbed power, plotted for the range of simulated radiation
frequencies. Each curve is normalized by the absorbed power calculated when integrating
over the whole frequency range. From this plot we see that most of the radiation is ab-
sorbed at the antenna frequency, in the lower half of the simulated frequency range.

Figure 5.3: Contributions to the noise equivalent power (Eq. 5.3 - Eq. 5.6) for blackbody
temperatures ranging between 100 mK and 5 K. NEPth.

g-r is the contribution to NEP due to
generation-recombination noise of a thermal quasiparticle distribution [23], evaluated for
a device temperature of 20 mK. For blackbody temperatures above 200 mK we will not
be limited generation-recombination noise due to the ambient device temperature. The
inset shows the same contributions to NEP, for blackbody temperatures above 1 K where
the background-limited NEP is dominated by the contribution due to photon shot noise.
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(with base temperature around 100 mK), while the sample is mounted to the top of the

mixing plate (which typically sits around 20 mK). In order to successfully measure quasi-

particle fluctuations due to absorption of radiation from the blackbody, we must reduce

sources of excess quasiparticles, for instance due to light leakage from higher temperature

stages. To do this, we use a sample box with an integrated chimney (Fig. 5.4 (a)), which

is inserted into blackbody. The blackbody, extending around the chimney is coated with

an absorptive mixture. Incident light from higher temperature stages would be absorbed

by this coating, instead of reaching the sample. Further, by mounting the sample to a

lower temperature stage, we reduce the expected contribution to noise equivalent power

due to generation recombination noise of a thermal quasiparticle distribution at the device

temperature. Evaluating Eq. 2.2 and Eq. 2.4 for a device temperature of 20 mK, we cal-

culate the contribution due to generation and recombination of this thermal distribution

[23]

NEPth.
g-r =

2∆

ηpbηopt

√
Nqp

τqp
(5.13)

using the simulated optical efficiency. This gives NEPth.
g-r ≈ 2× 10−24 W Hz−1/2, which for

blackbody temperatures above 1 K, is six orders of magnitude less than the contribution

from photon shot noise. In normal circulation, this contribution should not be a concern.

The blackbody apparatus is designed to ensure that operation of the blackbody does not

interrupt normal fridge operation. Details of the blackbody design can be found in the

subsequent Section.

5.2.4 Description of the blackbody apparatus

The blackbody used in these experiments consisted of 11
4 inch to 1 inch Cu reducer, which

was capped at the 1 inch diameter end to create a cup. This cup was then coated with

Eccosorb CR110 to create the blackbody. A resistive heater, attached to the capped

end of the blackbody, was used to vary the blackbody from 90 mK to 3 K. Additionally,

a RuOx thermometer was anchored to the top of the blackbody to allow for accurate

temperature readout. Calibration of these devices took place in a Leiden cryogen-free



61

Figure 5.4: Blackbody apparatus. (a) CAD assembly showing a cross-section of the Au-
plated Cu sample box with integrated chimney and the blackbody. (b) The sample box
and blackbody mounted in the dilution refrigerator. The sample box is mounted to the
refrigerator’s mixing plate, which has a base temperature of 18 mK. The blackbody is
weakly thermally coupled to the exchange plate, which typically resides at 90 mK while
the fridge is in normal circulation. (c) The Au-plated sample box and the sample box lid,
with integrated chimney. The sample sits in a 8 mm by 8 mm pocket. SMA connectors
are soldered to Cu trace on Rogers board launchers, from which wirebonds can be placed
in order to connect the on-chip feedline with the microwave lines in the fridge.

dilution refrigerator. Samples under test were mounted to the mixing chamber plate with

a base temperature of approximately 18 mK. The blackbody emitter was weakly thermally

anchored to the exchange plate of the dilution refrigerator using 1 inch long stainless steel

4-40 screws.

5.3 NEP due to incident power

Having calculated the incident power, Ps, we can now calculate the experimental noise

equivalent power, NEPexp(Ps, f). This can be done for either amplitude or phase with

expressions given by [23, 28].

NEPexp(Ps, f) =
√
SA,A(f)

(
dA

dPs

)−1√
1 + (2πfτqp)2 (5.14)

NEPexp(Ps, f) =
√
Sθ,θ(f)

(
dθ

dPs

)−1√
1 + (2πfτqp)2 (5.15)
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Figure 5.5: Resonator response to elevated blackbody temperature. Data and fits for a
subset of blackbody temperatures. (a) Transmission across the resonator as a function of
readout frequency. A shift down in resonant frequency and a decrease in quality factor are
both apparent with increasing blackbody temperature. (b) Phase as a function of readout
frequency. (c) The real and imaginary parts of transmission plotted in the complex plane.
Qi and f0 are extracted by fitting a circle to the data. The color bar indicates blackbody
temperature, Tbb, for a given dataset.

SA,A(f) and Sθ,θ(f) denote the measured power spectral density of amplitude or phase

fluctuations, respectively. dA/dPs and dθ/dPs are the amplitude and phase responsivity,

that is the change in amplitude or phase due to a change in the incident power. τqp is

the experimentally observed quasiparticle lifetime. In the following two sections, we step

through how each of these quantities is measured experimentally.

5.3.1 Detector responsivity

In Chapter 4 we extracted the amplitude and phase responsivity due to a thermal quasi-

particle distribution from the measured internal quality factor and resonant frequency as

a function of bath temperature. We take a similar approach to measuring the amplitude

and phase responsivity due to illumination with a blackbody emitter. Note that another

method for measuring the responsivity of the detector involves monitoring the change in

amplitude or phase while the blackbody temperature is varied in time [23]. The longer

(order of 10 min) time constant of our blackbody made this infeasible. Hence, we start

from measurements of the resonator taken for each blackbody temperature with a vec-

tor network analyzer. The internal quality factor and resonant frequency is extracted by
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fitting a circle to the real and imaginary parts of S21 [24, 36]. Data, along with fits, is

shown in Fig. 5.5. The fractional frequency shift and change in the loss, determined from

these fits is shown in Fig. 5.6 as a function of blackbody temperature, Tbb. Converting

blackbody temperature to incident power as described in Section 5.2.1, we see that the

data falls onto a line (Fig. 5.6 (c) and (d)). Fitting a line to the data, the slope gives the

change in δf/f0 or δ(1/Qi) due to a change in Ps.

Converting from Qi and f0 to amplitude and phase using Eq. 2.59 and Eq. 2.60 we

now have the amplitude responsivity and phase responsivity

dA

dPs
= −2Q

d(1/Qi)

dPs
(5.16)

dθ

dPs
= −4Q

df/f0
dPs

. (5.17)

The responsivity depends on the total quality factor, shown in Fig. 5.7 (a), alongside

the amplitude and phase responsivity as a function of incident power. The amplitude

and phase responsivity will be used to compute the experimental NEP (Eq. 5.14 and Eq.

5.15). To calculate the experimental noise equivalent power from Eq. 5.14 and Eq. 5.15

we require the amplitude power spectral density and phase power spectral density, respec-

tively. These are acquired in the same way as described in Chapter 4. For each blackbody

temperature, we first determine the resonant frequency, f0, and the angle required to or-

thogonalize the amplitude and phase signals in the IQ plane [25]. We repeatedly read

out on resonance to generate a timeseries. The power spectral density is computed by

taking the Fourier transform of each of the timeseries. This is repeated 1,000 times and

the average is taken of the resulting 1,000 PSDs. The result is shown in Fig. 5.8. The

last quantity required before we can compute the experimental NEP is the quasiparticle

lifetime, τqp, which we extract by fitting a Lorentzian to the noise spectrum. For low

temperatures, we find significant 1/f noise at low frequencies, and in this case a 1/fα

component is added to the fit function. In spite of this, it is still not possible to fit to

the lowest temperature datasets. The last temperature for which we can reliably extract
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Figure 5.6: Change in internal quality factor and resonant frequency due to incident
radiation from a blackbody emitter. (a) The change in the resonator loss, δ(1/Qi). (b)
The fractional frequency shift, δf/f0. (c) The change in the resonator loss as a function
of incident power. A linear fit to the data gives the change in δ(1/Qi) due to a change
in Ps. (d) The change in the fractional frequency as a function of the incident power,
Ps, from which the amplitude responsivity can be computed. The linear fit gives the
detector response in δf/f0 due to a change in Ps, from which the phase responsivity may
be computed.
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Figure 5.7: Detector responsivity to incident power. (a) The total quality factor, Q, plotted
versus incident power. The color of the markers indicates the blackbody temperature. (b)
Amplitude responsivity. (c) Phase responsivity.

Figure 5.8: Detector noise for varying blackbody temperature. (a) Amplitude power
spectral density. (b) Phase power spectral density. (c) Amplitude-phase cross-spectral
density. The noise level is lowest in the cross spectrum, which looks at correlated noise
sources of noise. As such, uncorrelated sources of noise (ex. due to the measurement
setup) are not present in the cross spectrum [11].
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Figure 5.9: Experimental noise equivalent power, NEPexp(Ps). Ps is the power emitted
by the blackbody source. (a) NEPexp(Ps) derived from the amplitude power spectral
density, SA,A(f). (b) NEPexp(Ps) derived from the phase power spectral density, Sθ,θ(f).
NEPexp(Ps) computed from the cross spectral density, Sθ,A(f).

a quasiparticle lifetime is Tbb = 740 mK. We use the value of the quasiparticle lifetime

extracted at this temperature for all lower temperature datasets. Finally, we can compute

the experimental noise equivalent power, NEPexp(Ps), shown in Fig. 5.9. We calculate a

noise equivalent power from the cross spectral density

NEPexp(Ps, f) =
√
Sθ,A(f)

(
dθ

dPs

dA

dPs

)−1/2√
1 + (2πfτqp)2 (5.18)

This type of detector is typically read out by monitoring changes in either amplitude or

phase, in which case one would quote the NEP calculated from amplitude or phase power

spectral density, respectively. However, for the purpose of demonstrating an understanding

of the detector response, the NEP calculated from the cross spectrum is useful as it does

not include sources of uncorrelated noise due to the experimental apparatus, such as

amplifier noise.

For each of the panels in Fig. 5.9, we plot the measured NEPexp(Ps) at a frequency

f < 1/2πτqp, in this case 500 Hz versus the incident radiation power, Ps (shown in Fig.

5.10. f = 500 Hz was chosen to be below the upturn in NEP corresponding to the

quasiparticle lifetime, and sufficiently above the 1/f noise at low frequencies. For a photon-

limited detector, we expect the noise equivalent power to scale as the square root of the

incident power [23]. To check this, we fit the high power points to a power law, finding



67

Figure 5.10: Power law fit to NEPexp(Ps). In the case of a photon-limited noise equivalent
power, we expect NEP ∝

√
P . We find that the NEP calculated from both the amplitude

PSD and the phase PSD are proportional to
√
Ps, as expected.

that our measured NEPexp ∝ P 0.46
s . As a result we can compare the measured NEPexp

with the calculated background limited NEPblip (Eq. 5.6). When evaluating Eq. 5.6

we use the optical efficiency calculated from Eq. 2.63 using the radiation impedance

simulated in CST Microwave Studio [29]. For the junction normal state resistance we

use the average room temperature resistance of on-chip witness junctions. The junction

capacitance is estimated from measurements of the junction area taken using a scanning

electron microscope, assuming a capacitance per unit area of 75 fF/µm
2
. The result is

shown in Fig. 5.11. We find good agreement with the noise equivalent power calculated

from the cross spectrum for high powers. At low powers we observe a saturation of the

NEP, similar to that observed by others [23, 43]. We account for this saturation in the

same way as was done in [43], add a constant NEP in quadrature with NEPblip. In our

case, we cannot determine the source of this saturation. It could be due to the microwave

readout tone, as was found in [23], or stray photons from higher temperature stages, among

other possibilities. NEPexp(Ps) calculated from the amplitude PSD and phase PSD are

both higher than that calculated from the cross spectrum, indicating excess sources of

uncorrelated noise due to the experimental apparatus.
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Figure 5.11: Noise equivalent power as a function of incident power, Ps. Ps is calculated
using Eq. 5.11 from the measured blackbody temperature (indicated by the marker color).
Square markers correspond to NEPexp(Ps) derived from the amplitude PSD, at f = 500
Hz. Circular and triangular markers are the same quantity for the NEPexp(Ps) derived
from the phase PSD and CSD, respectively. The black dotted line is the background-
limited NEP, NEPblip, calculated from Eq. 5.6 using the simulated, frequency-dependent
optical efficiency. We observe a saturation in the NEP at low powers. The dashed grey
line is the result of adding a constant term, NEPsat in quadrature with NEPblip, as was
done in [43]. We find good agreement between the theoretical background limited NEP
and the experimental NEP derived from the cross spectrum. This suggests the presence
of excess uncorrelated noise, such as amplifier noise or TLS noise.
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Figure 5.12: (a) Change in δ(1/Qi) as a function of the power absorbed by the detector. (b)
Change in the δf/f0 as a function of the power absorbed by the detector. The amplitude
and phase response to Pabs is calculated from a linear fit to the data. (c) The frequency
dependent efficiency, calculated from Eq. 2.63. The grey region indicates the frequency
band defined by a 3 dB decrease in efficiency on either side of the slot antenna resonance.
The average optical efficiency, ¯ηopt = 0.78, is calculated by integrating over this frequency
band.

5.4 Estimation of the dark NEP

Having demonstrated reasonable agreement between the measured NEPexp(Ps) and the

theoretical background-limited NEPblip, we can now estimate an efficiency for the detector

which will allow us to calculate a noise equivalent power under dark conditions, NEPdark.

We calculate the average optical efficiency by integrating the calculated frequency-dependent

efficiency.

¯ηopt =

∫ f2
f1
ηopt(f)df

f2 − f1
(5.19)

For the limits of integration we chose a frequency defined by a 3 dB decrease in efficiency

on either side of the slot antenna resonance (shown in Fig. 5.12 (c)). Evaluating Eq. 5.19

we find ¯ηopt = 0.78.

We calculate a noise equivalent power from the noise spectra measured on the dark

device (Chapter 4). In order to do this, we must first relate the measured response due to

a change in the number of quasiparticles, dA/dNqp and dθ/dNqp, to a change in the power
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at the detector. Following [23], these quantities are related by

ηpbηoptP =
∆Nqp

τqp
(5.20)

Thus, the response due to a change in the number of quasiparticles can be related to the

response due to power at the detector as

dA

dP
=
ηpbηoptτqp

∆

dA

dNqp
(5.21)

and

dθ

dP
=
ηpbηoptτqp

∆

dθ

dNqp
(5.22)

Using these equations we arrive at an expression for the noise equivalent power measured

under dark conditions

NEPdark =
√
SX

(
ηpbηoptτqp

∆

dX

dNqp

)−1√
1 + (2πfτqp)2 (5.23)

We calculate this using the amplitude and phase power spectral densities and detector

response measured on the dark sample (Chapter 4), and the average optical efficiency,

¯ηopt = 0.78. We estimate the pair-breaking efficiency at the slot antenna’s resonant

frequency to be ηpb ≈ 0.69 [48]. ∆ = 190µeV is the superconducting energy gap of

aluminum. τqp is the quasiparticle lifetime extracted from Lorentzian fits to the power

spectral density (Chapter 4). The resulting NEPdark is shown in Fig. 5.13. We find that

that NEPdark calculated from the amplitude power spectral density is about a factor of 5

higher than that calculated from the phase spectrum. This is consistent with experimental

noise equivalent power measured on the sample subjected to illumination by the blackbody.

That we see the same discrepancy across both samples indicates excess amplitude noise due

to the experimental apparatus. The noise equivalent power of the dark device, measured

at the cryostat’s base temperature of 18 mK, has a value of NEPdark = 3.6 × 10−20

W/
√
Hz at f = 500 Hz. This value is comparable to results measured for antenna-coupled
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Figure 5.13: Noise equivalent power, NEPdark, calculated using noise spectra measured on
the dark device (Fig. 4.5) from Eq. 5.23. When calculating NEPdark we use the simulated
optical efficiency averaged over a finite frequency band around the slot antenna frequency
(shown in Fig. 5.12 (c).

microwave kinetic inductance detectors designed to operate around 1 THz [28].

Finally, using the average optical efficiency we can calculate the experimentally mea-

sured noise equivalent power, due to radiation absorbed by the device for the sample

illuminated by the blackbody.

NEPexp(Pabs, f) =
√
SA,A(f)

(
dA

dPabs

)−1√
1 + (2πfτqp)2 (5.24)

NEPexp(Pabs, f) =
√
Sθ,θ(f)

(
dθ

dPabs

)−1√
1 + (2πfτqp)2 (5.25)

To do this, we recalculate the detector responsivity, using the absorbed power, Pabs, as

defined in Eq. 5.12. This is done by plotting the change in the resonator loss and the

fractional frequency shift as a function of Pabs (Fig. 5.12 (a) and (b)). The resulting

NEPexp(Pabs) is shown in Fig. 5.14.

Calibrating our detector with a blackbody source we found reasonable agreement be-

tween the noise equivalent power calculated using the cross spectral density. However,

NEPexp(Ps) derived from the amplitude and phase power spectral densities were higher,

indicating a high level of background noise intrinsic to the experimental apparatus. Fu-
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Figure 5.14: The experimental noise equivalent power, NEPexp(Pabs). Pabs is the power
absorbed by the detector, calculated from Eq. 5.12 using the simulated optical efficiency,
integrated over a frequency band defined by a 3 dB decrease in efficiency on either side of
the antenna resonance (Fig. 5.12 (c)).

ture use of this particular blackbody apparatus for detector characterization will require

improved shielding to reduce light leakage from higher temperature stages. In spite of

this, we demonstrate reasonable agreement with the theoretical background limited noise

equivalent power using the simulated frequency dependent optical efficiency. Improved

shielding resulted in lower white noise levels for a dark reference sample, resulting in

a competitive minimum noise equivalent power of NEPdark = 3.6 × 10−20W/
√
Hz at a

frequency of 500 Hz.
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Chapter 6

Spectroscopic characterization

with a Josephson emitter

One of the shortcomings of our blackbody apparatus is that we’re subjecting our detector

to broadband radiation. Depending on the intended application for the detector, it may

be more relevant to characterize detector performance over a small frequency band. In

this case, it is common to use filters between the blackbody source and the sample to

define a narrow frequency band around the detector resonance [23, 28, 45]. This however,

requires separate characterization of the filter response [49]. An alternative would be to

use a source that emits radiation over a narrow band of frequencies. A Josephson emitter

[31], a patch antenna shunted by a DC-biased Josephson junction, provides such a source.

A DC biased Josephson junction will emit radiation at a well-defined frequency as

a result of the AC Josephson effect. The frequency of the radiation emitted by this

Josephson radiator can be easily swept by varying the DC voltage across the junction. By

housing our detector in the same sample enclosure as a Josephson emitter, we can look at

the spectral response of the detector due to radiation and a well-defined frequency. This

type of transmit-receive experiment could provide another way to calibrate detectors.

Further, this type of experiment would also provide a unique way to probe the non-

equilibrium quasiparticle distribution since the Josephson emitter allows for injection at a
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well defined frequency, and the detector will resonantly absorb pair-breaking radiation at

a well-defined frequency. In this chapter we present preliminary results from a transmit

receive experiment where we monitor the response of out detector to radiation emitted by

Josephson emitter.

The Josephson emitter1 consists of a voltage-biased Josephson junction to ground (Fig.

6.1 (a) and (b)). As discussed in Chapter 1, A DC voltage applied to the Junction will

generate a time varying current (the AC Josephson effect)

I = I0 sin

(
2eV

ℏ
t

)
(6.1)

resulting in the emission of coherent radiation at the Josephson frequency

fJ =
2eV

h
=

(
484GHz

mV
× V

)
(6.2)

As a result one can vary the frequency of the emitted radiation in situ by simply varying

the DC voltage applied across the junction. The geometry of the Josephson emitter used

in these experiments is shown in Fig. 6.1 (b). It consists of a superconducting patch,

connected to the superconducting ground plane by a Josephson junction (the location of

the Josephson junction is indicated in yellow). This superconducting island, is itself an

antenna, in particular a patch antenna [30]. Thus, we expect the Josephson radiator to

resonantly emit radiation at its antenna frequency. For a patch antenna, the wavelength

of radiation corresponding to the antenna resonance will be approximately equal to one

round trip around this patch, which for the geometry used in this experiment corresponds

to frequency of approximately 250 GHz (Fig. 6.2). Josephson emitters, such as this, have

previously been used to subject superconducting qubits to pair-breaking radiation in order

to study quasiparticle poisoning of superconducting qubits [31]. Successful modeling of

this transmit-receive experiment required an understanding of the radiation response of

both Josephson emitter and the receiver antenna (in this case a superconducting qubit),

1Sometimes referred to as a Josephson radiator
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Figure 6.1: Transmit receive experiment. (a) Reproduced from Liu et al, 2024 [31]. Dual
sample enclosure used for the transmit receive experiment. The Josephson emitter (red)
was used to generate radiation at a well defined frequency while monitoring the response
of the detector (blue). (b) Optical image of the Josephson emitter. (c) Optical image of
the detector. The slot antenna is indicated in blue. (d) Scanning electron micrograph of
the receiver antenna.

simulation of which was done in CST Microwave Studio [29].

In the experiment presented in this thesis, we used an almost identical dual-sample

enclosure2 and modeled the radiation response of the Josephson emitter and the detector

in the same way using CST Microwave Studio. The sample configuration for the transmit-

receive experiment is shown in Fig. 6.1 (a), reproduced from [31]. The emitter in this

case is the Josephson radiator, introduced above (shown in Fig. 6.1 (b). The receiver is

the slot-antenna embedded in our kinetic inductance detector (Fig. 6.1 (c) and (d)). A

circuit diagram representation of the experiment is given in Fig. 6.1 (a).

Fabrication of the detector is described in Chapter 3. In the case of the Josephson

emitter, the superconducting patch and ground plane are both made of Nb deposited

via RF sputtering, and lithographically defined using optical lithography followed by a

Cl-based etch (similar to the processing described in Chapter 3). The substrate is a high-

resistivity Si(001) wafer. The Al-AlOx-Al Josephson junctions were defined in electron

beam lithography and deposited via double-angle electron-beam evaporation with an in

situ oxidation to create the oxide barrier. (Further details can be found in Chapter 3 and

Appendix B.1). Al wirebonds are used to transfer the DC bias voltage from the sample

2The sample enclosure used in this work was a slightly modified version of that used in [31]. An Al
spacer was added between the boxes to reduce losses due to the brass screws used to hold the boxes together
in the cryostat.
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Figure 6.2: Calculated efficiencies relevant to the transmit-receive experiment. The cal-
culated optical efficiency of the detector’s slot antenna is shown in blue. The calculated
efficiency of the Josephson emitter is shown in red. Both were calculated from Eq. 2.63
using the radiation impedance simulated with CST Microwave Studio and the measured
room temperature resistance values of on-chip witness junctions. The slot antenna (re-
ceiver) is expected to resonate at 140 GHz. The patch antenna (emitter) is expected to
resonate at 230 GHz.

enclosure’s printed circuit board launchers to the patch. Samples were thermalized to the

mixing plate of a Leiden cryogen-free dilution refrigerator and cooled to a temperature of

18 mK. The response of the detector was monitored by looking at transmission through

the on-chip feedline using a vector network analyzer. The DC bias was applied to the

Josephson emitter using an SRS SIM 928 voltage source.

We monitor the detector response in transmission while varying the DC voltage bias

applied to the Josephson emitter (thus varying the frequency of the emitted radiation).

The result is shown in Fig. 6.3 (a). The x-axis corresponds to the frequency of the

radiation emitted by the voltage-biased Josephson junction (calculated using Eq. 6.2).

Negative frequencies correspond to negative voltage biases, as a result, we expect the

detector response to be approximately symmetric around zero voltage bias. We start

with a qualitative discussion of features present in the dataset. We see a discontinuity

just above ± 90 GHz, corresponding to twice the Al gap. There is a clear reduction in

the internal quality factor of the resonator below 2∆, suggesting that even for radiation

frequencies below 2∆/h ≈ 92 GHz we are generating quasiparticles in the detector’s Al
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Figure 6.3: Detector spectral response. (a) Transmission across the detector as a function
of incident frequency emitted by the Josephson radiator. Vertical dashed lines indicate
at which emitter frequency the data and fits in the other three panels were taken. (b)
Transmission as a function of frequency. (c) Phase as a function of frequency. (d) Real
and imaginary parts of S21. Qi and f0 were extracted by fitting to a circle in the complex
plane.

sensor strip. Around ± 130 - 150 GHz, we see resonances corresponding to the resonant

frequency of the detector’s slot antenna. These peaks are spaced by ∼ 15 GHz, a multiple

of the resonant frequency of the detector’s CPW resonator. Simulations of the full detector

geometry (including the CPW resonator) capture this beating, and similar fringes were

observed in the work by C. H. Liu, et al [31]. Finally, around ± 230 - 250 GHz, there

is a large resonance corresponding to the resonant frequency of the Josephson emitter.

At these frequencies the Josephson emitter is resonantly emitting radiation, subjecting

the detector to a larger incident radiation power. Following [30, 31], the radiation power

emitted to free space can be calculated as

Prad =
ηc
8
I20Rn (6.3)

where ηc is the coupling efficiency of the Josephson emitter, and I0 and Rn are the critical

current and normal state resistance of the emitter Josephson junction, respectively. The

Josephson emitter’s efficiency is calculated from the radiation impedance simulated in

CST Microwave Studio, in the same way as was done for the slot antenna (see Section

2.4). Above 8∆ the radiator will emit incoherent radiation due to shot noise, resulting in

a gradual roll-off of the internal quality factor and resonant frequency of the detector [31].
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For each vertical slice of the 2-dimensional dataset shown in Fig. 6.3, we fit a circle

to the real and imaginary parts of S21 to extract the internal quality factor and resonant

frequency of the detector [24, 36]. Data and fits for a few representative line cuts are

shown in Fig. 6.3 (b) - (d). Repeating this for every emitter frequency, we extract the

change in the resonator loss, δ(1/Qi), and frequency shift, δf/f0 as a function of the

frequency of the incident radiation (Fig. 6.4 (c) - (d)). As was shown in Chapter 2, these

quantities are related to the Mattis Bardeen expressions for the real and imaginary parts

of the complex conductivity [15], and as such depend on the quasiparticle distribution

in the detector’s Al sensor strip. To verify that we understand the dynamics of this

transmit-receive experiment, we simulate the quasiparticle dynamics using a modified

Rothwarf-Taylor approach [17]. The model includes an injection rate (which depends

on the modeled efficiencies of both the Josephson radiator and the detector’s antenna),

recombination, trapping, scattering, and thermal quasiparticle generation (negligible for

the temperatures relevant to this work). The resulting quasiparticle energy distribution,

f(E), is used to compute the real and imaginary parts of the complex conductivity (Eq.

2.7 and Eq. 2.8), from which we compute the expected change in the internal quality

factor and resonant frequency (Eq. 2.22 and Eq. 2.35, respectively).

The results of this modeling are plotted as solid lines on the data shown in Fig. 6.4

(c) - (d). We find that the model captures both the depth and bandwidth of features

corresponding to the slot-antenna resonance (detector / receiver) and path antenna reso-

nance (Josephson emitter). This particular model was calculated the radiation impedance

simulated in CST Microwave Studio that did not include the detector’s CPW resonator.

As such the model does not capture the beating that is present in the data around the

slot antenna resonance. However, the model does accurately capture these features when

using the radiation impedance from simulations including the CPW resonator. Further,

the Riedel anomaly [50, 51] is both present in the data (singularity just below ± 200 GHz),

and is captured by the model when the singularity in the Josephson current is included

[31]. This agreement between the model and data demonstrates a good understanding of
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Figure 6.4: (a) Detector response as a function of Josephson emitter frequency. (b) Para-
metric plot of the fractional frequency shift versus resonator loss. The black line is the
theoretical δf/f0 (green circles in panel (d)) and change in δ(1/Qi) (yellow circles in
panel (c)), calculated from the Mattis Bardeen expressions using the quasiparticle energy
distribution resulting from the modified Rothwarf-Taylor approach. Data is shown in
purple. (c) The open circles are the resonator loss extracted from each vertical line cut
of the dataset shown in panel (a). The solid yellow line is the calculated change in loss
(Eq. 2.22) resulting from simulation of the quasiparticle dynamics in the transmit receive
experiment. (d) The open circles are the fractional frequency shift extracted from the
dataset shown in panel (a). The solid green line is the theoretical frequency shift resulting
from modeling of the quasiparticle dynamics. Modeling of the quasiparticle dynamics in
the detector’s Al sensor strip relies on an understanding of the way in which both the
Josephson emitter and the detector’s slot antenna couple to radiation.
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the way in which these structures emit and absorb radiation.

Finally, to demonstrate how this type of transmit receive experiment might be used

to probe the distribution of quasiparticles in the detector’s Al sensing volume, we para-

metrically plot the fractional frequency shift versus the change in loss, shown in Fig. 6.4

(b). The slope of this line will depend on the quasiparticle distribution [17, 20, 39]. Since,

within this experiment we are injecting quasiparticles at a single, well-defined frequency,

it should be possible to learn something about the quasiparticle dynamics in the device.
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Chapter 7

Outlook on Josephson mm-wave

detectors

The preceding five chapters report on the development of a novel mm-wave sensor that

uses a Josephson junction for impedance matching to improve coupling to pair-breaking

radiation. The detector is a variant of antenna-coupled microwave kinetic inductance

detector, which gets the bulk of it’s kinetic inductance from a small aluminum volume

at the current anti-node of a quarter wave coplanar waveguide resonator. The antenna

is implemented as a slot antenna designed to resonantly absorb radiation at 140 GHz,

which is driven by a Josephson junction located at the center of the slot. Targeting a

specific normal state resistance and capacitance of the junction provides a way to meet the

condition of maximal power absorption, allowing for optimization of the optical efficiency,

with simulated on-resonance efficiencies near unity.

To characterize the detector we evaluate detector response to a thermal quasiparticle

distribution (Chapter 4), finding good agreement with theory. In Chapter 5 we expose the

detector to radiation from a blackbody source, comparing the measured noise equivalent

power with the theoretical expectation for a background-limited detector. We find rea-

sonable agreement for the experimentally measured noise equivalent power derived from

the cross-spectral density. However, higher observed noise levels in the amplitude and
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phase spectrum indicate additional sources of noise intrinsic to the experimental appa-

ratus. Future work with this particular apparatus will require improved shielding. Us-

ing the modeled average optical efficiency we compute the NEPdark using noise spectra

measured on a nominally identical reference sample with improved shielding. This was

done as a function of ambient device temperature. In doing so we found a minimum

NEPdark = 3.6 × 10−20W/
√
Hz, which is competitive for detectors designed to absorb

radiation in the sub-THz range. Finally, we use a Josephson emitter to map out the fre-

quency response of the detector in a transmit-receive experiment. We find that, using the

simulated frequency-dependent efficiency, we can capture the frequency response of both

the transmitter and receiver (Chapter 6).

This novel sensor retains many of the attractive features of microwave kinetic induc-

tance detectors, including the ease of frequency multiplexing. The detector itself can be

easily modified to target a range of radiation frequencies by varying the antenna design.

The addition of the Josephson junction adds minimal fabrication overhead as it may be

deposited in the same evaporation step as the aluminum sensing volume. Further, from

simulations it is apparent that the detector efficiency is stable over a large range of junc-

tion resistances, making it a good candidate for use in large detector arrays. Hence, this

novel sensor offers utility to radio astronomy. Further, the transmit-receive experiment

discussed in Chapter 6 provides a unique way to probe the quasiparticle dynamics of the

Josephson junction. Currently, non-equilibrium quasiparticles limit the sensitivity of pair-

breaking detectors and the coherence of superconducting qubits, affecting a large range of

superconductive and Josephson-based devices. New knowledge of quasiparticle dynamics

could result in improvements in qubit coherence or improved sensitivity of detectors.



83

Part II

Toward implementation of a

protected charge-parity qubit
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Chapter 8

Protection at the hardware level

Superconducting qubits rely on fragile quantum states to store information and perform

computations. In it’s most general form, this state can be written as |ψ⟩ = α |0⟩ + β |1⟩,

and can be conveniently visualized using the Bloch sphere (Fig. 8.1 (a)). The Bloch sphere

is a unit sphere, with state |0⟩ at the north pole and |1⟩ at the south pole. A pure state

(|α|2 + |β|2 = 1) would then be a vector from the center of the sphere to any point on

the surface. Rewriting this state in terms of the polar (θ) and azimuthal (ϕ) angles that

describe this unit vector, we find |ψ⟩ = cos(θ/2) |0⟩+ eiϕ sin(θ/2) |1⟩. The fragility of this

state is described by the coherence time (or two, rather). T1 describes relaxation from the

excited state, |1⟩, to the ground state, |0⟩, or alternately excitation out of the ground state.

T2 describes drift in the phase of the quantum state. In the most naive sense one could

quantify the performance of a quantum computer in terms of the number of computations

possible before coherence is lost. We see immediately that a functional quantum computer

requires long coherence times (both T1 and T2), as well as comparatively short gate times.

Superconducting qubits, fortunately, offer both fast (nanosecond) gate times the promise

that long coherence times may be engineered. Already, exponential progress has been

made since the first demonstration of quantum coherence in a superconducting qubit by

Nakamura et al in 1999 [52] with large-qubit count processors achieving coherence times
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Figure 8.1: Superconducting circuits for quantum computation. (a) The Bloch sphere.
(b) Circuit representation of a transmon qubit. (c) The transmon has a cos δ potential,
where δ is the phase across the Josephson junction. The energy eigenstates are plotted
on top of the potential, offset vertically by the eigenenergies. The hyperbolic potential of
an LC oscillator (where the inductance is the Josephson inductance) is indicated by the
dotted grey line showing that when considering the lowest energy states, the transmon
may be well approximated by the harmonic oscillator.

of order 100 µs [53, 54]. While such quick progress would not have been possible without

advancements in fabrication , packaging, and an improved understanding of the dominant

loss mechanisms affecting superconducting qubits, the success and ubiquity of the trans-

mon is due, at least in part, to the fact that it offers protection against phase errors at

the hardware level [5]. For the purposes of this thesis, we define ‘protection’ as exponen-

tial insensitivity to both bit-flip and phase errors. The transmon consists of a Josephson

junction or SQUID, with energy EJ , shunted by a capacitance (Fig. 8.1), with charging

energy EC . For the right choice of ratio between EJ and EC , the transmon can be made

to be exponentially insensitive to charge-noise [5]. It will be insensitive to phase errors,

however this circuit will still be susceptible to other sources of local noise and decoher-

ence such as TLS losses, flux noise, quasiparticle poisoning, among others. As such, we

can think of the transmon as a half-protected qubit which will necessitate some form of

quantum error correction. Popular error correcting protocols, such as the surface codes

[55], rely on large arrays of data and ancilla qubits to uniquely identify and correct errors.

It is estimated that for state of the art coherence times and gate fidelities one would need

close to a million physical qubits to build a useful error-corrected quantum computer with

such a protocol [55]. This presents a formidable engineering challenge. There would be a
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Figure 8.2: The 0−π qubit. (a) Circuit representation of the 0−π qubit, which consists of
a π-periodic Josephson element shunted by a capacitor. (b) Phase basis representation of
the 0−π qubit. In the phase basis, the potential is proportional to a double-well potential
with local minima at 0 and π.

massive hardware overhead associated with biasing and reading out the qubits. Cooling

and heat sinking of supporting microwave components presents a challenge as the space

on the cold plate of a dilution refrigerator is limited. An alternate approach would be to

engineer a new type of qubit which is protected from local noise and decoherence – both

bit flip and phase errors.

The 0 − π qubit1 is one such implementation of a protected qubit consisting of a π-

periodic Josephson element shunted by a capacitance (Fig. 8.2 (a)). It has been shown

that a qubit made with such a π-periodic element would be a fully-protected qubit [56].

In the phase basis the potential is proportional to cos(2δ), shown in Fig. 8.2 (b), so we

have a double-well potential with local minima at 0 and π. The two lowest lying energy

states are near degenerate representations of symmetric and anti symmetric wavefunctions

localized in the 0 and π wells. This near degeneracy is critical for achieving protection.

In the charge basis (Fig. 8.2 (c)) these states map to superpositions of even or odd

numbers of Cooper pairs, and as such are highly de-localized and intertwined. Hence, any

environmental fluctuations will affect these states in a similar way – this is critical for

achieving protection.

Since it’s proposal in 2001 there have been steady progress towards the development

1The implementation of the 0−π qubit pursed by our collaboration is formally called the charge-parity
or C-parity qubit.
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of a 0 − π qubit, including a number of circuit implementations. The work in this thesis

builds upon the Josephson rhombus chain work pursued by Ioffe and Gershenson [57]. An

alternate implementation of the 0−π qubit has been pursed by Koch, Schuster and Houck

[58, 59]. An alternate circuit implementation called the cos(2ϕ) qubit2 was proposed in

2020 [60]. Each implementation comes with its own unique challenges, be they difficult

to implement circuit parameters, parasitic modes that provide unwanted coupling to the

environment, or myriad control lines. The challenges associated with developing and

controlling these exotic qubits lend merit to the relative simplicity of the transmon3.

In the remainder of this Chapter we try to elucidate the origins of protection in such

a device. In order to do so, we first need to discuss the construction of a composite

π-periodic Josephson element.

8.1 Engineering a π-periodic Josephson element

The composite Josephson element studied in this thesis consists of two Josephson junctions

and two inductances which form a loop through which an externally applied flux, Φext may

be threaded (Fig. 8.3 (a)) [63]. We can write down an expression for the two-dimensional

potential of this element using flux-quantization [3]

U(δ1, δ2) = −I0Φ0

2π
(cos δ1 + cos δ2) +

1

4L

(
Φext −

Φ0

2π
δdm

)2

(8.1)

where δ1 and δ2 are the phase across each of the two Josephson junctions. We assume zero

asymmetry, that is, both inductors have inductance, L and both junctions have critical

current, I0. Rewriting this expression in terms of the common mode and differential-mode

phases

δcm =
δ1 + δ2

2
and δdm =

δ2 − δ1
2

(8.2)

2In this case, ϕ represents the phase across the junction, which we call δ.
3Although not strictly relevant to the scope of this thesis, I would be remiss not to mention the

increasingly popular fluxonium qubit [7]. In recent years, long relaxation times have been demonstrated in
capacitively shunted variant called the ‘heavy fluxonium’ [61], prompting the development of comparatively
fast flux-based gates [62]. While the fluxonium exhibits surface-level similarities to the 0 − π qubit (for
instance, the double-well potential), it does not allow for topological protection.
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Figure 8.3: A composite Josephson element capable of tuning between 2π and π-periodic
regimes. (a) Circuit representation of a π-periodic Josephson element called a plaquette.
Each plaquette consists of two inductors and two Josephson junctions arranged in a su-
perconducting loop, through which an externally applied flux, Φext, may be threaded. (b)
The potential, rewritten in terms of the common-mode, δcm = (δ1+δ2)/2, and differential-
mode, δdm = (δ2− δ1)/2 phases. For zero externally applied flux, Φext = 0, there are three
local minima, separated by δcm = 2π. (c) When biased at half a flux quantum, Φext−Φ0/2,
we find a doubling of the number of local minima. (d) Taking the trajectory connecting
local minima in sub-figure (b), we see that the plaquette will be 2π-periodic for zero ex-
ternally applied flux. (e) Again taking the trajectory connecting adjacent local minimal
we see that for half-flux quantum bias points the composite Josephson element will be
π-periodic.
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we plot the resulting potential in Fig. 8.3(b) for zero externally applied flux, and in

Fig. 8.3(c) for Φext =
Φ0
2 .

Immediately we see that for the case of zero externally applied flux, there are three

local minima and that we have a doubling of the number of local minima when biased

at half a flux quantum4. For each of these plots we may take the trajectory between

adjacent local minima. Plotting the value of the two-dimensional potential as a function

of the common-mode phase across the composite element (Fig. 8.3 (d)), we clearly see

that the element is 2π-periodic when biased at integer flux quantum. In this case, where

we are nulling any externally applied flux, the plaquette will behave as a normal Josephson

junction. Moving through the same analysis for the case of Φext = Φ2
0 , we see that the

element will be π-periodic when biased at half-integer flux offsets. When biased at half a

flux quantum, the first harmonic of the Josephson energy (which is proportional to cos δ) is

suppressed, and the second harmonic (proportional to the cos(2δ) remains. So we will have

a π-periodic Josephson element when biased at half a flux quantum. Having demonstrated

how one might engineer a π-periodic Josephson element, we may now discuss the origins

of protection in a circuit constructed from these elements.

8.2 Protection against bit-flip errors

Recall that a circuit made with a π-periodic Josephson element aspires to protection from

both bit-flip and phase-flip errors [56]. We begin by discussing protection against bit-flip

errors as it is more intuitive and we may employ the same strategy that has seen success

in fluxonium qubits [61]. Operation of this device as a protected qubit requires that we

capactively shunt the plaquette. The Hamiltonian describing the full circuit (Fig. 8.2 (a))

is then

H =
n2g
2C

− E2 cos(2δ) =
n2g
2C

− U(δ) (8.3)

where ng described the charge on the island, C is the shunt capacitance, and E2 is the

amplitude of the second harmonic of the Josephson energy, which sets the barrier height of

4Henceforth referred to interchangeably as half a flux quantum, Φ0/2, or frustration.
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Figure 8.4: Protection against bit-flip and phase errors. (a) Protection against bit flip
errors in the charge-parity qubit is achieved with the use of a capacitive shunt. The
addition of a large capacitance forces computational ground states to be localized deep
in the wells, exponentially suppressing tunneling between states localized in the left and
right wells. (b) Phase errors in this qubit are due to imperfections in the π-element, and
as such they are due to flux noise. De-tuning away from Φext = Φ0/2, a mechanism via
which we can have evolution from one computational state to the other is introduced.(c)
The computational states will be localized in the left and right wells. Tunneling between
states in the left and right wells will be described by two hyperbolic bands separated by
an energy gap, ∆

the double well potential5. Noting that the shunt capacitance is analogous to mass in this

system, and applying the WKB approximation [64] we see that the capacitance will appear

in the exponential and further that increasing the capacitance will exponentially suppress

tunneling between the two wells. Hence protection against bit-flip errors is achieved via

the exponential suppression of tunneling errors6.

8.3 Protection against phase-flip errors

A qubit made from a capacitvely shunted π-periodic Josephson element to be insensitive

to phase errors as well as bit-flip errors. Physically, phase errors in this system will be

due to imperfections in the π-elements. For a perfectly symmetric plaquette biased at

half a flux quantum, there will be no evolution between states localized in the two wells.

5Note that here we are using the one-dimensional cos(2δ) potential for a π-periodic Josephson element,
not the two-dimensional potential discussed in the previous Section. This argument extends beyond our
particular implementation of the π-periodic element.

6Extending this argument we see that physically, bit-flip errors in this system can be attributed to
charge noise.
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Figure 8.5: Exponential insensitivity to flux noise via concatenation. (a) For a device made
with a single plaquette we expect to be very sensitive to flux noise because of the linear
flux dispersion. (b) For a two-plaquette system we expect a quadratic flux dispersion when
simultaneously biasing both plaquettes to half a flux quantum. (c) The flux dispersion is
expected to continue to scale exponentially, with a four-plaquette system having a quartic
flux dispersion around frustration. By concatenating we soften the flux dispersion around
Φ0/2, becoming exponentially insensitive to flux noise, hence achieving protection against
phase errors.

However, a mechanism for evolution between these states may be introduced if there is

some asymmetry in the π-element or if the external flux is de-tuned from half a flux

quantum, Φext =
Φ0
2 + δΦ. Hence, due to the construction of our π-element, phase errors

will be due to flux noise. Tunneling between the left and right wells will be described

by two hyperbolic bands (Fig. 8.4 (c)) separated by an energy gap, ∆. Let us define an

asymmetry energy, ϵ, adding in quadrature with ∆.

For a single plaquette system, the splitting between states localized in the left and right

wells will be very small due to shunting with a large capacitance, however the flux disper-

sion will be linear (Fig. 8.5 (a)) making the device very sensitive to flux noise. As such, we

expect to have essentially no protection against phase errors in a single plaquette device.

However, exponential insensitivity to flux noise may be achieved through concatenation of

multiple π elements. For a two plaquette system, when biasing the plaquettes simultane-

ously to half a flux quantum (double-frustration), we expect the flux dispersion along this

trajectory through this two-dimensional flux space to be quadratic. Similarly, although

harder to visualize, a device with four plaquettes brought simultaneously to frustration

would have a flux dispersion that is quartic. By concatenating additional plaquettes we

are able flatten the energy bands around the Φ0/2 operating point. Since this scales ‘expo-
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Figure 8.6: Qubit spectroscopy of a three-plaquette device. Reproduced from K. Dodge
and Y. Liu et al, 2023 [63]. (a) Qubit spectroscopy of a three-plaquette device around
single-frustration (biasing one plaquette through a small range of fluxes centered around
Φ0/2). This is done while explicitly nulling the flux through the other two plaquettes.
The authors identify intra-well transitions (plasmons) in red and inter-well transitions
(fluxons) in blue. They extract device energy scales and asymmetry from fits to the
qubit spectroscopy. (b) Qubit spectroscopy around double-frustration (Φ1 = Φ2 = Φ0/2),
where Φ1 is the externally applied flux in the first plaquette, and Φ2 is the externally
applied flux in the second. Again, fits to the spectroscopy are used to identify plasmons
and fluxons. An unwanted transition out of the computational basis is also identified
(shown in purple). (c) Spectroscopy around triple-frustration (Φ1 = Φ2 = Φ3 = Φ0/2).
Comparing the spectroscopy through single, double, and triple-frustration we can see the
flattening of the fluxon transitions (blue).

nentially’ with the number of plaquettes, it is via concatenation that we achieve protection

against phase errors.

This exponential softening of the energy bands was verified experimentally [63]; a

detailed description of these experiments can be found in the theses of Kenneth Dodge

[65] and Yebin Liu [66]. Details and shortcomings of this design will be discussed briefly

here, however, the focus of this thesis is primarily on the subsequent generation of plaquette

devices. Working with a three-plaquette device, similar to that described in this thesis,

Dodge and Liu et al take extensive spectroscopy data around single, double, and triple-

frustration (Φ1 = Φ0/2, Φ1 = Φ2 = Φ0/2, and Φ1 = Φ2 = Φ3 = Φ0/2, respectively).

A partial figure from the paper is reproduced in Fig. 8.6. They measure the transition

frequencies at each flux point, fitting to extract device parameters. From simulations using

device parameters extracted from fits they show the exponential dependence of the flux

dispersion on the number of plaquettes (Fig. 8.7).

This attempt at implementing a protected-charge parity qubit was limited by excita-

tions out of the computational ground state, making time domaine characterization of the

device difficult. This was thought to be in part due to enhanced radiative coupling to the
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Figure 8.7: Exponential dependence of flux dispersion on the number of plaquettes. (Re-
produced from [63].) Using parameters extracted from fits to spectroscopy, Dodge and Liu
et al show the exponential dependence of the flux dispersion on the number of plaquettes,
demonstrating decreased sensitivity to flux noise.

Figure 8.8: Comparison of physical device scale for devices studied in Dodge and Liu et
al and those studied in this thesis. On the left is the design file for the device studied
in [63]. The inter-digital planar capacitor is of mm-scale, aiding radiative coupling to the
environment and making initialization into the computational ground state a challenge.
Future design iterations, described in this thesis, aim to avoid this by moving to a planar
capacitor for the capacitive shunt. A scanning electron micrograph of one of these devices
is shown on the right. The overlap capacitor is 55 µm per side, an orders of magnitude
reduction device in size. Devices shown in this figure are roughly to scale.
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environment [63], a result of the massive planar capacitor used in this design (Fig. 8.8).

It has been shown [30, 31] that superconducting qubits can be thought of as aperture

antennas, where typical Josephson junction parameters provide a reasonable conjugate

match to free space allowing for the resonant absorption of pair-breaking radiation. Fu-

ture designs, investigated in this thesis attempt to mitigate these effects by replacing the

mm-scale planar capacitor with a parallel plate capacitor. In the remaining chapters of

this thesis we discuss development, design, control, and characterization of such devices.
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Chapter 9

Plaquette: A composite Josephson

π-periodic element

Having discussed the origins of protection in plaquette-based devices we move to the

physical implementation and verifcation of such elements. We begin by discussing details

of the fabrication of the π-elements, before moving on to a set of experiments integrating

these π-elements into an RF SQUID, demonstrating the ability to tune between 2π-periodic

and π-periodic regimes.

9.1 Engineering a composite π-periodic Josephson element

As introduced in Chapter 8, our implementation of a π-periodic Josephson element, the

plaquette, consists of two inductors and two Josephson junctions, arranged in a supercon-

ducting loop through which an externally applied flux may be threaded (Fig. 8.3 (a)). To

achieve suppression of the first harmonic of the Josephson energy when biased at half a

flux quantum, we require that the Josephson energy,

EJ =
I0Φ0

2π
(9.1)
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and the inductive energy,

EL =

(
Φ0

2π

1

L

)2

(9.2)

be approximately matched. In these experiments we target EJ/kB ≈ EL/kB ≈ 1 − 2 K,

which corresponds to a junction critical current of order 100 nA and a linear inductance

of order 1-10 nH. Working with imperfect π-elements and aspiring to protection through

concatenation we are able to target energy scales readily available with existing fabrication

techniques1.

Josephson junctions are fabricated using standard Al-AlOx-Al junction processing, and

are deposited via double-angle evaporation. See Appendix B.1 for a detailed discussion

of the geometry involved. Recall that asymmetry in the π-element will contribute to in-

sufficient suppression of the first harmonic of the Josephson energy at frustration. The

dominant source of asymmetry in the plaquette will be due to variations in the Josephson

energy of these smaller Josephson junctions. Contributing factors to junction asymmetry

include variations due to the size of Al granules comprising the junction and variations

in the lithographically designed junction area. Numerous attempts were made to miti-

gate variation in EJ , including the use of proximity effect correction during electron-beam

lithography and cold development of the resist post-exposure. Room temperature re-

sistance spreads (reported in Fig. 9.1 (d) and (e)) can be used to quantify plaquette

asymmetry prior to cooldown. It is expected that plaquette asymmetry of 2-5% will be

required to successfully realize a qubit with these π-elements [63].

Inductors are implemented as arrays of large area Josephson junctions, as was first

done in fluxonium qubits [7]. Working with large-area Josephson junctions, the non-

linearity of the inductance is suppressed making it possible to realize a linear inductor in

a superconducting circuit. An alternate approach, which was investigated early on in this

collaboration and has successfully been implemented in fluxonium circuits [67, 68] is to use

a high-kinetic inductance material such as superconducting nitrides (NbN, TiN, NbTiN,

1Other implementations of the 0−π qubit require microHenry inductances as well as minimal stray ca-
pacitance to ground (of order 10 fF), making them incredibly challenging to realize with existing fabrication
techniques [58, 59]
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Figure 9.1: (a) Scanning electron micrograph of a plaquette. A small-area junction is indi-
cated by the orange box, and an inductor is indicated in blue. (b) Small-area junction with
designed area 100 nm × 100 nm. (b) Linear inductors in the plaquette were implemented
as arrays of large-area Josephson junctions, such as this. Junction chains consisted of 17
Josephson junctions, with nominal area 1 µm × 180 nm. (d) Junction resistance spreads
and mean resistances for small area junctions across a quarter of a three-inch wafer. The
position of the die is indicated on the x and y axes. The percentage indicates one standard
deviation in room temperature resistance of test junctions on that die, of which there are
six. Marker size is also proportional to this value. The color, cross-reference to the col-
orbar indicates the mean junction resistance. (e) Junction resistance spreads and mean
resistances for arrays of large-area junctions across the same quarter wafer. The leftmost
dies in the top two rows were cooled for measurement, the data on which is reported in
the remainder of this thesis.
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etc.) or granular aluminum2. In particular, nanowires fabricated from titanium nitride

via atomic layer deposition have demonstrated sheet inductances up to 234 pH/□ and

have been used to make resonators with internal quality factors ranging between 1× 105

and 1×106 at single-photon powers [69]. While highly uniform, high-quality films such as

this may help to decrease asymmetry between plaquettes (for instance due to variations

in yield in the junction arrays), we ultimately opted to pursue Josephson arrays for the

inductors as they allowed for reduced fabrication complexity.

Finally, it is critical that we have local flux control of each plaquette. This is achieved

with on-chip bias lines, which will be discussed further in the context of device layout and

control in Chapter 11.

9.2 Demonstration of π-periodicity

To verify that we can sufficiently suppress the first harmonic of the Josephson energy we

integrate the plaquette into an RF SQUID an demonstrate tuning between the 2π and π-

periodic regimes. An RF SQUID is the parallel combination of a capacitor, inductor, and a

Josephson junction3 in parallel to ground. The circuit diagram is shown in Fig. 9.2 (a). In

a conventional RF SQUID, the inductor and Josephson junction form a superconducting

loop which may be biased by an externally applied flux, Φext. In the plaquette resonator,

the Josephson junction is replaced by plaquette (Fig. 9.2 (b)), giving us two flux knobs to

turn. By fixing the flux through the plaquette loop, and looking at the plaquette resonator

frequency as a function of the RF SQUID flux, Φext, we can verify that we are able to

access the π-periodic regime. The plaquette resonator response is shown in Fig. 9 (c) for

Φplq = 0 (bottom plot) and Φplq = Φ0/2 (top plot).

2Sometimes called ‘dirty’ aluminum
3Possibly, a SQUID, two junctions in parallel to form a superconducting loop which similar to the

plaquette may be biased by an externally applied flux.
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Figure 9.2: The performance of the π-element was verified by integrating the plaquette into
an RF SQUID, a so called ‘plaquette resonator’. (a) Circuit diagram for the conventional
RF SQUID consisting of a capacitor, inductor, and Josephson junction in parallel. The
inductor and junction form a loop which may be biased by an externally applied flux,
Φext. (b) Circuit representation of the plaquette resonator. The plaquette (c) replaces
the Josephson junction in the conventional RF SQUID. In addition to the RF SQUID
bias, Φext, the plaquette may be locally flux biased by modulating Φplq. (c) Plaquette
resonator data taken by K. Dodge and Y. Liu in the Plourde lab at Syracuse University
[65]. Plaquette resonator frequency is shown as a function of the RF SQUID flux, Φext.
In the bottom plot Φplq = 0, and for the top Φplq = Φ0/2. There is a clear halving of the
period in the top plot, clearly demonstrating the ability to tune between the π and 2π
periodic regimes.
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Chapter 10

Design and control of

multi-plaquette devices

In this Chapter we discuss design and control of devices with up to three plaquettes, giving

details of the most recent device layout and device fabrication. We then discuss control

of multi-plaquette devices and, in particular, the extraction of mutual inductances from

cavity spectroscopy data, allowing for compensation of unwanted flux crosstalk.

10.1 Design, layout and fabrication

Each chip (Fig. 10.1) consists of a multi-plaquette device, capacitvely coupled to a CPW

resonator, a plaquette resonator (see previous Section for details), and a lumped element

resonator all coupled to a shared transmission line. With this chip design we aim to

independently verify the performance of each circuit element in the multi-plaquette device.

The lumped element resonator, consisting of a parallel plate capacitor and a spiral

inductor allows for independent testing of the parallel plate capacitor used in the multi-

plaquette device. The resonator is capacitvely coupled to the central feedline via a parallel

plate capacitor. This resonator allows us to rule-out the possibility of pin-hole shorts

through the dielectric. From the resonant frequency of this lumped element resonator we

may extract a capacitance per square micron for the parallel plate capacitor, which we can
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Figure 10.1: Optical micrograph showing the multi-plaquette chip. In the center of the
chip is the multi-plaquette device, supporting up to three-plaquettes, shunted by a parallel
plate capacitor, and capacitively coupled to a quarter-wave coplanar waveguide resonator
for dispersive readout. On the shared transmission line there is a plaquette resonator (lower
left) to verify the π-periodicity of the plaquettes in situ, and similarly, a linear, lumped
element resonator to test the parallel plate capacitor. Crossovers are used to control
ground currents around the device. Twelve junction test structures are located at the top
of the chip, six to test the large-area junction arrays and six small-area witness junctions.
Structures to test step coverage and integrity of the dielectric used in the crossovers are
located in the bottom right corner of the chip. The ground plane, transmission line, and
control lines are Nb on high resistivity silicon. Evaporated silicon dioxide is used for
the dielectric in the crossovers and parallel plate capacitor, with an Al counter-electrode.
Note that optical images were taken prior to electron beam lithography. As a result, the
Josephson junctions had not yet been deposited at the time these photos were taken.
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then use for modeling of the multi-plaquette device. Finally, fitting to a circle in IQ space,

we may extract the internal quality factor of the resonator, which will be dominated by

losses from the SiO2 in the parallel plate capacitor. This is useful to know as this will also

be the dominant source of loss in the multi-plaquette device.

The inclusion of the plaquette resonator on-chip allows us to verify that we can suffi-

ciently suppress the first harmonic of the Josephson energy. This confirms that we do in

fact have a π-periodic element. The RF SQUID inductors in this case are implemented as

arrays of large-area Josephson junctions, identical to those used in the plaquettes. We opt

for a gradiometric design, where the RF SQUID inductance is two inductors in parallel to

ground. This allows for symmetric biasing and capacitance to ground. The parallel plate

capacitor is identical to that used in the lumped element resonator. Local flux lines allow

for independent modulation of the flux through the plaquette, and the RF SQUID loop.

The multi-plaquette device is located in the center of the chip, and is controlled using

four flux bias lines and one global charge gate, and two local charge gates. Further details

regarding biasing and control will be given in the subsequent Section. Scanning electron

micrographs of the multi-plaquette device are provided in Fig. 10.2. The device supports

up-to three plaquettes. The number of plaquettes is chosen in electron beam lithography.

In addition, there are ‘dummy’ plaquettes at the bottom and top of the chain. This is

to ensure symmetric capacitance to ground for each of the ‘real’ plaquettes in the chain.

At the bottom of the scaning electron micrograph in Fig. 10.2 (a), the parallel plate

capacitor, along with the global charge gate are visible. Just out of picture, but visible in

the inset of Fig. 10.1, the shunt capacitor was capacitvely coupled to a quarter wave CPW

resonator via an interdigital capacitor. This quarter wave resonator was then inductively

coupled to the central feedline, and was used for dispersive measurement.

Devices were fabricated on high resistivity Si(001). Base layers could be either Nb or

Al deposited via RF sputtering. An HF etch immediately prior to deposition was used

for removal of the native oxide. The base layers were patterned via optical lithography

using a Nikon i-Line stepper. In the case of Al base layers, the base layer was etched
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Figure 10.2: Details of the multi-plaquette structure. (a) Scanning electron micrograph
showing the multi-plaquette structure, supporting up to three plaquettes, defined dur-
ing electron beam lithography. Plaquettes are numbered from bottom to top, with the
bottom-most and top-most plaquettes being ‘dummy’ plaquettes (with junctions shorted
in lithography), included to ensure symmetric capacitance to ground. At the bottom of
the image is the shunt capacitor to ground (magenta square) implemented as a parallel
plate capacitor. At the top of the chain is an Al patch, used for gap engineering. SiO2-Al
crossovers ensure good microwave hygiene around the bias lines (further description of the
bias lines may be found in Fig. 10.5. (b) Circuit representation of a three plaquette device
(‘dummy’ plaquettes are not shown). (c) Scanning electron micrograph of two plaquettes,
showing the locations of the small area junctions (yellow) and large-area junction arrays
(purple). Micrographs of which are shown in sub-figures (d) and (e), respectively.
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Figure 10.3: Cryogenic measurement apparatus. (a) Devices were cooled in a bluefors
cryogen-free dilution refrigerator. (b) Microwave relays, thermalized to the cryostat’s
mixing plate were used to increase measurement throughput. Devices were shielded in
a Cryoperm (µ-metal) can, coated on the inside with a mixture of SiC grains, carbon
black, and Stycast. (c) Inside the Cryoperm can, samples, housed in an Al enclosure, were
mounted to a copper drop-down plate. Non-magnectic SMA cables were used inside the
can to transfer control pulses to the device. (d) The twelve-sided Al sample enclosure.
surface-mount SMA connectors, soldered to copper on Rogers board launchers were used
to transfer measurement and control signals into the sample enclosure. Al wirebonds were
used to transfer signals from the printed circuit board launchers to on-chip transmission
and control lines.
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during development in the developer (1-3% aqueous TMAH solution). In the case of

Nb base layers, features were defined via a Cl-based inductively coupled plasma etch.

Subsequent to base layer definition, resist was removed in NMP before a second round of

optical lithography to define areas where SiO2 would be deposited for the crossovers and

parallel plate capacitors. Since deposition of the dielectric is done via a liftoff process, an

image reversal resist was used, requiring an additional flood exposure (done with a Karl

Suss MA6 mask aligner) post exposure with the Nikon stepper. SiO2 was deposited via

electron beam evaporation, and lifted off in NMP heated to 80 C. A final layer of optical

lithography was used to define the top electrode for the crossovers and parallel plate

capacitor. This was again done with an image reversal resist. Post-lithography, Al was

deposited via electron beam evaporation and again lifted off in hot NMP. Subsequent to

optical lithography, electron beam lithography was used to define the Josephson junctions

and inductors. Fabrication of the Josephson junctions relied on a resist bi-layer (PMMA

950 A3 atop MMA 8.5 EL11). Further details of the junction fabrication can be found in

Appendix B.1. Josephson junctions were deposited via double angle evaporation and lifted

off in hot NMP. After junction deposition, the resistance of on-chip witness junctions was

measured to determine junction yield and normal state resistances for both the small-area

and large-area junctions. The normal state resistance is related to the Josephson energy

by the Ambegaokar-Baratoff relation [6], allowing for estimation of the device energy

scales prior to cooldown. If the mean resistance values and resistance spreads were within

tolerance, samples were diced and packaged.

Samples were packaged in a 12-sided Al sample enclosure (shown in Fig. 10.3 (d)),

and cooled in a blue-fors cryogen-free dilution refrigerator (Fig. 10.3 (a)). Transmission

through the central feedline was monitored via heterodyne detection. Measurement pulses

were synthesized with a quantum machines OPX+ and mixed with a carrier tone around

a few GHz to produce arbitrary pulses at microwave frequencies. Inside the cryostat,

measurement signals were attenuated by 20 dB at the 3 K stage, and in the case of

the transmission lines and charge lines again at the mixing plate. Low pass filters and
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Figure 10.4: Microwave measurement setup. (a) Heterodyne setup used for synthesis
measurement and drive pulses. (b) Wiring diagram for the three plaquette device.
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eccosorb filters were used to further reduce light leakage from higher temperature stages

and to filter out noise above the device frequency. Radiall microwave relays, modified for

use in a cryogenic environment were used to increase measurement throughput.

Signals were subject to three stages of isolation at the mixing plate before amplification

by a high-mobility electron transistor (HEMT) at the 3 K stage. Further amplification was

done at room temperature. Upon returning to the electronics rack, waveforms sent through

the on-chip transmission line were mixed to baseband using a copy of the microwave carrier

tone. Further demodulation took place upon returning to the OPX+ for analog to digital

conversion. Flux control pulses were synthesized directly with the OPX+. Microwave

drive tones applied to the charge bias lines were mixed to microwave frequencies in the

same way as was done for measurement tones sent through the device transmission line.

10.2 Traversing a multi-dimensional flux space

Upon cooling a device, the ability to tune each plaquette was verified. This was done

by modulating the current applied to one or more of the bias lines located adjacent to

that plaquette. The flux through each plaquette loop could be controlled via two on-

chip bias lines, one coming up alongside the plaquette from each side. This was done to

again ensure symmetric capacitance to ground of each plaquette in the chain. Fig. 10.5

shows the naming convention for the control lines of which there are four local flux bias

lines, a global charge gate, and two local charge gates to control the offset charge on the

intermediate island between plaquettes. Flux bias lines are labeled to indicate which two

plaquettes in the chain they bias, counting up from the capacitor. ‘Dummy’ plaquettes

(with shorted junctions) are labeled as 0. For instance, the flux bias line biasing plaquettes

1 and 2 would be called ‘PB12’. The bias line biasing the third plaquette in the chain and

the ‘dummy’ plaquette at the top of the chain would be labeled ‘PB30’. Due to the close

proximity of bias lines, it became critical to account for cross-talk between plaquettes.

To investigate how the device dynamics changed as we brought one plaquette, then two,

then three to frustration, it was critical to be able to null the flux through plaquettes that
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Figure 10.5: Control of multi-plaquette devices. (a) Screen capture of the design file for
multi-plaquette devices. White is the Nb base layer, grey are areas where the Nb has
been etched away exposing the silicon substrate. SiO2 used in the parallel plate capacitor
and crossovers is displayed in dark blue. Red is the Al counter-electrode. Flux bias lines
are labeled in light blue, while charge gates are labeled in orange, the naming convention
for which is described in the main text. (b) Scanning electron micrograph with flux and
charge bias lines indicated in false-color. (c) Circuit representation with bias lines labeled
and indicated in color.

weren’t being actively investigated. The close proximity of bias lines around the multi-

plaquette structure resulted in a non-negligible mutual between each of the plaquettes and

all of the flux bias lines. As a result, it was critical to extract the mutual inductance matrix

for the device in order to account for undesired biasing due to stray mutual inductances.

The mutual inductance matrix

M =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 =


0.91 1.14 0.29

0.25 1.04 0.96

0.11 0.30 1.15

pH (10.1)

describes the mutual inductance between each superconducting loop and each on chip

bias line. The vector of currents applied to the bias lines is related to the vector of fluxes

through each superconducting loops by the following relation

I⃗ =M Φ⃗. (10.2)
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By inverting Eq. 10.2 it is possible for any point we would like to access in this three-

dimensional flux space, to calculate what currents to apply simultaneously to the bias

lines. We extract the mutual inductance matrix from a series of datasets where we mon-

itor the cavity response while modulating the current applied to two of the bias lines

simultaneously. 
IPB01

IPB12

IPB23

 =


M11 M12 M13

M21 M22 M23

M31 M32 M33


−1

Φ1

Φ2

Φ3

 (10.3)

The eagle-eyed observer would note that we are in fact over-constrained since there are

four bias lines and three plaquettes. The fourth bias line can be used as a global offset

in this case, if the Φ0/2 operating place is near the extent of the output range of the fast

electronics. It also provides critical redundancy in the event of a wiring error or damaged

bias line.

In this series of datasets, shown in Fig. 10.6 (d)-(f) we can see two or three sets of

transitions (parallel lines), depending on which lines are being biased. From the slopes

and periods of these lines we extract the mutual inductance from each plaquette loop

to each bias line, thus filling out the mutual inductance matrix. Once we have the full

mutual inductance matrix we may inver it to calculate what currents to apply to each

bais line to access any point in this multi-dimensional flux space. The result of this

flux orthogonalization is shown in Fig. 10.6 (g)-(i). A horizintal or vertical line cut of

one of these plots would correspond to biasing a single plaquette while nulling the flux

through the other two loops. Points where two sets of lines intersect are where both

plaquettes are brought to Φ0/2 simultaneously. Moving through this crossing diagonally

would correspond to moving through double-frustration. Doing this same thing for the

case where the third plaquette was held at Φext = Φ0/2 would be triple frustration.
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Figure 10.6: Flux orthogonalization. Upon cooldown the mutual inductances between
each flux bias line and each plaquette are determined by monitoring the cavity response
while sweeping two sets of bias lines simultaneously. The plaquettes are identified in each
scan. From the slopes and periods of the transitions through this multidimensional flux
space, we estimate the mutual inductances. (a)-(c) Scanning electron micrographs of the
multi-plaquette structure. The bias lines for which the current is swept are shown false-
color in red. (d)-(f) Cavity response as a function of the current applied to two flux bias
lines. Each set of diagonal transitions corresponds to one plaquette in the chain. (g)-(i)
Orthogonalized flux control. Cavity response due to sweeping the externally applied flux
for two plaquettes while nulling the flux through the third.
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Chapter 11

Measurement of multi-plaquette

devices

In Chapter we discuss measurement of one and three-plaquette devices, with nominally

identical parameters. These dies were located next to each other on the wafer during fabri-

cation. We present initialization data and a measurement of relevant relaxation timescales

for a single-plaquette device. We performs flux-based spectroscopy of a single-plaquette

device, mapping out avoided level crossings between states in the two wells as a function of

flux by monitoring the change ground-state in population as we move through the crossing.

Finally, we present qubit spectroscopy data for one and three plaquette devices.

11.1 Measurement of single-plaquette devices

The single-plaquette device is a useful tool for learning how to initialize and operate these

devices, however we do not expect this device to be protected. Hence, we move to multi-

plaquette devices in subsequent sections.

11.1.1 Initialization in the fluxon basis

A critical ingredient for any qubit is the ability to initialize in the computational basis.

One basis we may choose to work in is the fluxon basis, working with states localized in
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Figure 11.1: Energy level structure of a single-plaquette device. (a) Energy eigenstates of
a capacitively shunted cos(2δ) potential, offset by the eigenvalues, plotted on top of the
potential, E2 cos(2δ). This is what we expect for a perfect π-element (or equivalently, a
plaquette biased at Φ0/2). The energy levels form doublets, with the lowest two localized
deep within the wells. (b) Adding a cos(δ) component to the potential, we calculate the
energy eigenstates as a function of the externally applied flux, Φext. At un-frustration
(Φext = 0Φ0), there is a flattening of the energy bands as the cos(δ) becomes dominant.
Here we expect the response of the π-element to be like that of a traditional Josephson
junction.

Figure 11.2: (a) The two lowest lying energy states in the fluxon (left-right) basis at Φext =
Φ0/2. These states represent linear superpositions of the two lowest lying energy states in
Fig. 11.1 (a). Explicitly relating the two lowest energy eigenstates to the left right basis,
we have |0⟩ = 1√

2
(|left⟩+ |right⟩) and |1⟩ = 1√

2
(|left⟩ − |right⟩) [70]. (b) Energy structure

of a single-plaquette device simulated using SuperQuantModel [71]. States originating in
the left well are indicated with blue dashed lines while right well states are indicated with
red dashed lines. Near Φ0/2, we expect myriad avoided level crossings between states in
the left and right wells. States will often be referred to by these labels throughout the
remainder of this thesis.
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the left and right wells. For this type of device we can do a flux-based initialization to

transfer population to the ground state of either the left or right well. To understand

how this is possible, we must think about the energy level structure. Around half a flux

quantum we have a double well potential. Away from half a flux quantum, we recover the

cos(δ) potential and the plaquette behaves similar to a normal Josephson junction. To

initialize one well, for example, the left well, we need to bias far enough from half a flux

quantum that we start to loose the right well, quickly dumping all of the population into

the left well. It’s via this maneuver that we may initialize population into either the left

or right well.

Note that this initialization protocol does not require an drive on the internal state

of the device. As such, for a sufficiently high barrier height (large capacitance), we can

initialize and maintain population in one well or the other, and see this response in the

cavity spectroscopy (Fig. 11.3 (a) and (b)). We first initialize one well or the other, then

bias to wherever we would like to read out. Fixing the flux offset at which we readout, Φro,

and interleaving initializing in the left or right well, we can look at the signature of the

two states in IQ space (Fig. 11.3 (c)). We can clearly distinguish between the two states.

We observe that left right initialization in qubit spectroscopy as well, if we apply a drive

tone at the frequency between the ground and first excited states. Shown in Fig. 11.3

(d) and (e), we again see that upon initialization in one state or the other, we maintain

population in that state for about 100 mΦ0.

The distance between the blobs is set in part by the location at which we choose to read

out. Consider the coupled system shown in Fig. 11.4 (b). The frequency of the plaquette

device (right side of the circuit diagram) will load the resonator frequency, further the

plaquette device frequency will take different values depending on whether the device was

initialized in the left well or the right well. The transition frequency to the first excited

state, for a device initialized in the left well will be

ω01,R = ω1L − ω0L (11.1)
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Figure 11.3: Initialization in the left-right basis. (a) Cavity response initializing the left
well. Population is maintained in the left well for some ways past half a flux quantum. (b)
Cavity response after initializing in the right well. Population is again maintained some
ways past half a flux quantum. (c) IQ blobs for the left and right ground states when de-
tuned from Φ0/2 by 70 mΦ0. (d) Spectroscopy of the first excited state after initialization
in the left well. And (e) Spectroscopy of the first excited state after initialization in the
right well. (f) The distribution of points in IQ space in sub-figure (c), projected onto the
line connecting the centers of the blobs (in this case the I axis), and plotted as histograms.
This set of IQ data is later used for calibration of the population in either the left or
right well. For mixed states, with population in both wells, we fit the histogram with
a two-component Gaussian to extract the population in each well, using this dataset for
calibration.
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and similarly for the right well

ω01,R = ω1R − ω0R (11.2)

From the simulated spectra, we can then define an effective inductance for the plaquette

device,

Leff,L =
1

ω2
01,LCq

and Leff,R =
1

ω2
01,RCq

(11.3)

which will again depend on in which state the device was initialized. We can solve for the

loaded frequency using the method of load lines since we know that the imaginary part of

the admittance at the node between the resonator and the plaquette circuit must be zero.

Let the loaded frequency of the coupled system for a device initialized in the left well be

ωL and ωR for a device initialized in the right well. From here, we can define an effective

dispersive shift

2χeff = ωL − ωR (11.4)

As we near Φro = Φ0/2, we expect the blobs to be nearly indistinguishable, as separation

between the two ground states in frequency decreases (equivalently, ωL ≈ ωR). However,

de-tuning from frustration χeff will increase, resulting in increased measurement visibility.

To see this concretely, one would include the coupling circuit, write down an expression

for the impedance of the combined circuit. From this one can get an expression for

transmission across the cavity (as was done in Chapter 2) and finally, relate this quantity

to the centers of the IQ blobs.

Ultimately we would like to probe the dynamics at Φext = Φ0/2. One challenge that

accompanies this type of flux based initialization is that in order to bias to Φ0/2 we must

pass through myriad avoided level crossings. As we tune in flux the depths of the wells

shifts, bringing different levels in the two well near each other in frequency. When this

happens, there will be an avoided level crossing, which provides a mechanism via which we

can exchange population between the two states. Traversing these crossings too quickly

can result leakage out of the computational subspace. This can be mitigated through the

use of pulse shaping, for instance softening the rise edge of the pulse.
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Figure 11.4: Effective dispersive shift χeff. (a) Simulated energy level spectra [71] with the
first two states in each well indicated. The transition frequency of the plaquette device
will be the difference in frequency between the 0L and 1L states, in the case of left well
initialization or the difference between the 0R and 0L states in the case of right well
initialization. Depending on which state the plaquette device is in, for a given flux offset,
the resonator will have a different loaded frequency. The difference between these two
resonator frequencies will directly impact the readout visibility (the separation between
IQ blobs in Fig. 11.3 (c)). (b) Circuit representation of the coupled system. In the
design stage, we can estimate the readout visibility from the simulated spectra, using the
simulated transition frequencies to define an effective inductance, Leff. We can calculate
the loaded frequency for the plaquette device in the left or right state by setting the
imaginary part of the admittance to zero at the node between the coupled resonators, and
solving for the new resonant frequency.
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11.1.2 Relevant relaxation times

Having demonstrated successful initialization in the left-right basis, we can now probe the

relevant relaxation times of the device, of which there are two.

The intra-well relaxation time, or relaxation time between states within a single well

is the timescale most comparable to the T1 of a transmon qubit (Fig. 11.5 (a)). It is

measured by applying a pulse at the frequency between the ground state and first excited

state in order to excite population into the higher state. One then waits a variable amount

of time before reading out the state, in order to measure the time it takes to relax back

to the ground state. Data with an exponential fit to extract the time constant is shown

in Fig. 11.5 (c). The measured intra-well relaxation time is 388 ns. For this iteration of

plaquette devices we expect the intra-well relaxation time to be very short, on the order of

a few hundred nanoseconds. This is due to the fact that a lossy dielectric has been used in

the construction of the parallel plate capacitor. We expect the intra-well relaxation time

to be limited by two-level fluctuators. Luckily, this is not the most relevant timescale for

the operation of these devices.

Since protection from bit-flip errors stems from the suppression of tunneling between

the two wells, the inter-well well relaxation time, that is the relaxation time between states

in different wells (Fig. 11.5 (b)) is more relevant when characterizing the performance of

these devices. The inter-well relaxation is measured by first idling to one side of frustration

in order to initialize one of the wells, then biasing through half a flux quantum such

that the initialized well is no longer the global minimum, idling for a variable wait time,

then reading out the device state. This is repeated for a range of idle times. Data

for this experiment is shown in Fig. 11.5 (d). Fitting an exponential to the data as a

function of time allows us to extract the relaxation time, 1.2 ms. This dataset was taken

100 mΦ0 from frustration. In general, we expect this relaxation time to increase as we

approach frustration because the ground states become more deeply localized in the two

wells. However, as one moves closer to frustration it becomes increasingly difficult to

differentiate between the two states as they move towards near-degeneracy. A long inter-
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Figure 11.5: Measurement of relaxation times of plaquette devices. (a) The intra-well
relaxation time is the relacation time between states within a single well. (b) The intra-
well relaxation time is the relaxation time between states in adjacent wells. (c) Measured
intra-well relaxation time for a single-plaquette device. The intra-well relaxation time
is limited by TLS losses due to the parallel plate capacitor. (d) Measured inter-well
relaxation time, when biased 100 mΦ0 from half a flux quantum.
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well relaxation time indicates the suppression of tunneling between states in adjacent wells,

which as discussed in Chapter 8, is the source of protection from bit-flips in this device.

11.1.3 Flux-based spectroscopy of plaquette devices

Having measured the relevant timescales of the device we move towards probing the time

domain dynamics near frustration with two goals: (1) to verify experimentally the device

parameters and (2) to observe population transfer between states in the left and right

wells. We revisit the energy level structure of the device around Φ0/2 (shown in Fig.

11.6). Ultimately, we would like to work towards observing coherent population transfer

from the ground state in the left well (0L) to the ground state in the right well (0R),

or vice versa. The lowest energy avoided crossing, located at Φ0/2 allows for interaction

between the two ground states, however, due to the near degeneracy of the two states

the energy splitting between the states will be very small (see Fig. 11.7, top inset) and

difficult to resolve in spectroscopy. Further, due to the linear flux dispersion of the single

plaquette device, the avoided crossing will be exist over a very small range of fluxes, of

order 10 µΦ0, which is both at the resolution the fast electronics available for use in this

experiment, and of order the expected flux noise for this system. As a result observing

population transfer via the 0R-0L avoided crossing would be incredibly challenging.

In addition to the crossing between the two ground states, de-tuning from frustration

there will be crossings between the ground state in one well (in this example, the right

well), and higher excited states in the other well (Fig. 11.6). As the potential shifts, and

these states are brought near to each other in frequency they are given the opportunity

to interact. From the simulated spectra (Fig. 11.7, lower inset) we see that the avoided

crossings between the ground states in one well and higher excited states in the other

well increase in size as we move further from frustration. For example, from the spectra

simulated using nominal device parameters we expect the 0R-8L to be much larger, with

an energy splitting of order 10 MHz, and spanning mΦ0 in flux rather than µΦ0.

Population transfer via these avoided level crossing will be governed by the Landau-
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Figure 11.6: Single-plaquette device spectra calculated using SuperQuantPackage [71].
At half a flux quantum the lowest energy avoided crossing will be between the left-well
ground state and the right-well ground state (yellow). De-tuning from Φ0/2, we expect to
see avoided crossings between the ground state in the right well and higher excited states
in the left well (green and blue).
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Figure 11.7: Calculated single-plaquette spectra [71]. The energy splitting between the
ground state in the left well, 0L, and the ground state in the right well, 0R, at Φ0/2 is
necessarily very small, due to the near degeneracy of the computational states. Further, for
a single-plaquette device this splitting occurs over a small range of fluxes, comparable to
the level of flux noise expected in this system. This is due to the linear flux dispersion of a
device with a single π-element. However, de-tuning from Φ0/2, avoided crossings between
the ground state in one well, in this case 0R, and higher excited states in the other well,
for example 8L, increase in size. By navigating these crossings in a controlled way we
can transfer population from the right well to the left well. This population transfer is
described by the Landau-Zener formula [72, 73].
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Zener formula [72, 73]. Hence the probability of remaining in the right well will be

PR = e−π2∆2/(df/dt) (11.5)

where ∆ is the energy splitting in units of frequency and df/dt is that rate of change of

frequency (the rate with which one navigates the avoided crossing). This is related to the

flux pulse ramp rate via the flux dispersion

df

dt
=
dΦ

dt

df

dΦ
(11.6)

such that the condition for adiabatic passage becomes

∆2 ≫ dΦ

dt

df

dΦ
. (11.7)

Hence, ramping the flux more slowly we expect greater population transfer from one well

to the other. By varying the ramp rate, and the flux that we idle at, it should be possible

to map out the size and locations of the avoided crossings, which uniquely determine

the device parameters. The measurement sequence (Fig. 11.8) is as follows: we first

initialize in one well or the other, as was described in Section 11.1.1. We then modulate

the flux, with a known rate to the bias offset (past frustration) where we would like to

probe the dynamics, Φprobe. We idle for a short time, allowing the system to quickly relax

into the ground state of the other well. Finally, we quickly bias and read out. Fixing

the readout location, Φro allows us to calibrate the left-right well population by fitting a

two component Gaussian to the IQ data (as described in Section 11.1.1). Repeating this

measurement sequence, varying Φprobe, allows us to map out the locations of the avoided

crossings in flux space. Repeating this scan for a range of ramp rates, and using Eq. 11.5

along with the simulated flux dispersion it should be possible to extract the sizes of the

avoided crossings.

Fig. 11.9 shows the result of this experiment for the single plaquette device. Here

we are initializing population in the right well, then bias past frustration, transferring
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Figure 11.8: Measurement sequence for flux-based spectroscopy of plaquette devices. First,
one well (right) is initialized as described in the previous Section. Then, the flux is
modulated past Φ0/2 at a controlled rate, dΦ/dt. Idling at the flux we wish to probe,
Φprobe, the system quickly relaxes to the ground state of the left well. We then bias and
readout at a fixed flux offset, Φro. Repeating this experiment, sweeping Φprobe and varying
the ramp rate, dΦ/dt, we can map out the locations and sizes of avoided level crossings.

population to the left well. Starting about 100 mΦ0 left of frustration we begin to see

drops in population as we pass through avoided crossings. Sharp drops, are presumable

where we are idling on an avoided crossing. As we increase the ramp time, we see that

we are getting more population transfer. This is qualitatively consistent with what we

expect.

While the single-plaquette device is a simpler system, allowing us to learn how to

initialize and manipulate these devices, we do not expect protection against phase errors

in such a device. We ultimately need to push towards multi-plaquette devices.

11.2 Measurement of three-plaquette devices

Pushing onward toward the three plaquette device, we have already shown that we can

successfully navigate this multi-dimensional flux space. We begin to probe the energy level

structure of these devices around Φ0/2.
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Figure 11.9: Initializing the right well, then biasing past frustration in a controlled way,
drops in population, the result of navigating avoided level crossings adiabatically, are
observed. As expected, slower ramp rates correspond to larger population transfer.

11.2.1 Spectroscopy of higher excited states

We perform spectroscopy of the device’s excited states, in the same way that qubit spec-

troscopy is typically done for conventional superconducting qubits. We apply a drive tone,

in this case to the charge line capacitvely coupled to the shunt capacitor, in order to excite

the device out of the ground state. Due to the short intra-well relaxation time the drive

pulse is often overlapped with the readout tone. Sweeping the frequency of the drive tone

and the flux offset, we identify transitions between energy levels, mapping them out as a

function of flux.

We begin by working around single frustration where one plaquette in the chain is

biased at half a flux quantum and the other two are kept at zero flux offset. Fig. 11.10

(e)-(g) shows spectroscopy of the first excited state modulating the flux through ony one

of the plaquettes. Each of the lower scans is taken along the flux trajectory indicated

by the black dashed line in the plot above. In all cases we see that the spectra are

relatively symmetric, dispersing strongly around ±Φ0/2. Looking over a smaller range of

fluxes around Φ0/2 (see Fig. 11.11 (c)) we see a number of transitions, both plasmons

(intra-well transitions) and fluxons (inter-well transitions) [63]. We identify the plasmon

corresponding to the first excited state around 700 MHz, in addition to a direct drive to

the third excited state around 2.1 GHz. The fluxons are the strongly dispersing transitions
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Figure 11.10: Spectroscopy of first excited state around single frustration (Φ1,2,3 = Φ0/2).
(a) Circuit representation of three-plaquette device. (b)-(d) Cavity response as a function
of two flux offsets. The black dashed line indicates the flux trajectory along which spec-
troscopy measurements were taken (below). (e)-(g) Spectroscopy of the first excited state
while biasing the flux through one plaquette only (nulling the flux through the other two).
We see that the spectra are relatively symmetric and disperse strongly around ±Φ0/2.
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seen cutting across the plasmons.

Moving now toward plauqette 1-2 double frustration (Φ1 = Φ2 = Φ0/2), we repeat this

type of measurement moving along the trajectory indicated by the black dashed line in

Fig. 11.11 (d)1. We again see the first excited state around 650 MHz, along with the third

excited state around 2 GHz. In addition to these transitions, a transition involving the

cavity [63] is indicated with the orange dashed line. For these measurements a microwave

generator gated with a microwave switch was used in order to sweep over a large range of

frequencies without needing to worry about the spurious2 tones from the mixer. Looking

forward, the intention is to use one of the higher excited states identified in spectroscopy

to perform initialization and coherent manipulation via a two-tone drive, as has been

previously demonstrated in fluxonium circuits [61, 62].

11.3 The path toward coherent control

Due to the nature of protection in this device, the path towards coherent control is a

challenging one. The near degeneracy of the ground state doublet at frustration provides

protection in that any environmental fluctuations will affect the two states in a similar

way. However, this near degeneracy also makes it challenging to initialize the device at

half a flux quantum. And while one could imagine using the flux-based initialization

described in Section 11.1.1 then biasing to half a flux quantum, traversing the myriad

avoided crossings around frustration presents ample opportunity for leakage. Alternative

approaches, borrowed from the fluxonium literature [61, 62], rely on multiple microwave

drives.

Akin to the heavy fluxonium system, when de-tuned from half a flux quantum, the

ground state in each well and a higher state form a lambda system. Following the protocol

described in [61], one could coherently address the computation states by simultaneously

applying two microwave tones (νpump and νprobe) to pump population from one ground

1An aside on the cavity response shown in Fig. 11.11 (d): the intricate fine structure around frustration
is due to higher excited states dispersing across the cavity [63]

2Image and local oscillator bleed-through
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Figure 11.11: Spectroscopy of excited states around single (Φ1,2,3 = Φ0/2) and double
frustration (Φ1 = Φ2 = Φ0/2). (a) Circuit representation of three-plaquette device is
reproduced here. (b) Cavity response as a function of plaquette 1 and plaquette 2 flux off-
sets. The black box indicates double frustration. (c) Spectroscopy of higher levels around
plaquette 1 single frustration. We observe transitions to the first and third excited state
plasmons around 0.7 GHz and 2.1 GHz, respectively. Strongly dispersing transitions are
fluxons, transitions between states in different wells. (d) Cavity response over a smaller
range of fluxes around double frustration. The black dashed line indicates the flux trajec-
tory along which spectroscopy presented in sub-figure (e) was taken. (e) Spectroscopy of
higher excited states around plaquette 1-2 double frustration. Again, the first and third
excited state plasmons are visible around 0.65 GHz and 2.0 GHz. Fluxons are also visible,
in addition to a transition involving the cavity (orange dotted line), identified by Dodge
and Liu et al [63].
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state to the other, in a technique closely related to optical pumping. However, to success-

fully implement this protocol, one must first identify a higher excited state with sufficient

participation in both wells. This would likely need to be a much higher excited state due

to the large shunt capacitor causing lower excited states to still be localized in a single

well. Further, the intermediate state would need to have sufficiently long coherence time

to support population transfer. Since the quality factor of each state is expected to be

limited by the lossy dielectric used in the parallel plate capacitor, the intra-well relaxation

time of the nth excited state would scale as T0n ≈ T01/n = 388ns/n, making this maneuver

difficult.

An alternate approach, successfully demonstrated in the fluxonium literature [62],

utilizes excited state doublets and along with states of the readout resonator to initialize,

manipulate, and read out the computational states. The authors take advantage of parity

selection rules to selectively pump population from the ground state of one well to the

readout resonator, via an intermediate excited state. Population transferred to the readout

resonator would quickly decay out of the system. This protocol presents a path toward

initialization of the device at half a flux quantum. However, further modeling of the system

would be needed to identify viable excited state doublets for use in the protocol.
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Chapter 12

Outlook on protected qubits

The successful implementation of a fully protected qubit remains an exciting challenge

for the superconducting qubit community. Proposals for which often require stringent

control of device energy scales [58, 59], target parameters that are challenging to realize

with existing fabrication procedures, and rely on complex control schemes to manipulate

and read out the devices [63]. And while the technical requirements are daunting, full

simulation and modeling of such devices can take days or even weeks on a lab computer [63].

The complexity of these devices compared to more traditional superconducting qubits,

such as the transmon [5], make this a challenging prospect to achieve on the timescale of

a single graduate education.

Because of this, the body of academic papers on protected qubits remains relatively

small even as the field expands rapidly. Instead, much of the work that has been done on

protected qubits lives in the theses of students who spent a portion of their graduate career

working towards this goal [65, 66, 74–76]. In spite of this, there remains increased effort

and interest, as demonstrated by changes in APS March Meeting offerings over the years.

In 2018 the Superconducting Qubits: Novel Devices session at the APS March Meeting

contained a single talk about a protected 0−π qubit [77]. An additional talk by A. Gyenis

appeared in the session: Characterizing and Controlling Superconducting Circuits II [78].

Last year at the 2024 APS March Meeting in Minneapolis, six of the thirteen talks in the
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Novel Superconducting Qubits session were dedicated to discussing 0−π qubits [79], with

a further four talks on protected qubits in the Unconventional Superconducting Qubits

session [80]. And this list is by no means exhaustive. I am hopeful that as the field

continues to progress, pushing the boundaries of what is possible in fabrication, improving

the speed and dynamic range of control electronics, and learning how to better model the

dynamics of these circuits that we will soon see demonstration of a topologically protected

superconducting qubit.

Ultimately, what drew me to this field was the diversity of quantum systems that

one could engineer with three macroscopic circuit elements: the capacitor, the inductor,

and the Josephson junction. And while protected qubit projects such as the one pursued

in this thesis highlight the versatility of the superconducting circuit toolbox, they also

demonstrate the engineering challenges associated with controlling and understanding the

technology that we build.
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Appendix A

Mathematical derivations

A.1 Parallel to series circuit mapping

Mapping a series combination of a resistor and inductor or capacitor to an equivalent

parallel circuit is a useful trick for describing qubit drive terms [81] or capacitive coupling

of superconducting resonators (see Appendix A.2), among other applications. We employ

this trick in Chapter 2 to derive the resonator response due to a change in the quasiparticle

distribution in the Al sensor strip of our detector. This derivation closely follows the work

of [82].

Suppose that we have a parallel combination of a resistor, RP , and capacitor or inductor

(referred to here by the reactance, XP ), as shown in Fig. A.1 (a). We can write down the

expression for the impedance of this circuit

ZP =
1

1/RP + 1/(iXP )
. (A.1)

Multiplying by the complex conjugate, we can rewrite this as

ZP =
iRPXP

RP + iXP

RP − iXP

RP − iXP
=
RPX

2
P + iR2

PXP

R2
P +X2

P

.

The expression can be further simplified using the expression for the quality factor of

a parallel circuit, QP = RP /XP :
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Figure A.1: Parallel and series combinations of a resistance and reactance. The reactance
can describe either a capacitor, XC = −1/ωC, or inductor, XL = ωL.(a) The parallel
combination has a combined impedance, ZP = (1/RP + 1/(iXP ))

−1. (b) Series combina-
tion, with combined impedance, ZS = RS + iXS .

ZP =
RPX

2
P + iR2

PXP

X2
P (Q

2
P + 1)

=
RP + iQ2

PXP

(Q2
P + 1)

.

Having separated the real and imaginary parts of this expression, we now have some-

thing that looks like a series combination of a resistor and inductor or capacitor (Fig. A.1

(b)), ZS = RS+iXS . We can define a series resistance and reactance from this expression:

ZP =
RP

(Q2
P + 1)︸ ︷︷ ︸
RS

+i
Q2

PXP

(Q2
P + 1)︸ ︷︷ ︸
XS

. (A.2)

To use this mapping in both directions, we need to rewrite RS and XS so that it’s not

dependent on QP , which may not be known if we’re starting from the series combination

and mapping to the parallel combination. This can be done using the fact that the

quality factor of the series and parallel circuits must stay the same. We can show this

mathematically, starting from the expression for the quality factor of the series circuit,

QS = XS/RS . Using our expressions for RS and XS , we can rewrite this in terms of the

parallel quality factor, QP .
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QS =
XS

RS
=
Q2

PXP

Q2
P + 1

Q2
P + 1

RP
= Q2

P

XP

RP
= QP

Having shown that the quality factor of the series and parallel circuits must be the

same, we can rename the quality factor QP = QS = Q. We summarize the transformation

between the series and parallel circuits:

RP = RS(Q
2 + 1) and XP =

XS(Q
2 + 1)

Q2
(A.3)

Finally, one important case to discuss is the case where Q≫ 1. In this case, we find

RP ≈ RSQ
2 and XP ≈ XS (A.4)

All applications of this mapping discussed in this thesis fall into the high-Q limit.

A.2 Qc of a capacitively coupled λ/4 resonator

We can apply the series-to-parallel mapping derived in Appendix A.1 to derive the expres-

sion for the coupling Q of a λ/4 resonator capacitvely coupled to a feedline (Fig. A.2(a)),

in terms of the coupling capacitance, Cc. From the standpoint of the coupling capacitor

looking into the resonator, the CPW resonator looks like a short at the far end. As such,

we can map the λ/4 resonator to a parallel LCR tank circuit [22]. The resulting circuit is

shown in Fig. A.2(b), where the the input and output impedance (typically 50Ω has been

combined and denoted as a single resistive element.

We can map the coupling circuit to an equivalent parallel circuit, as shown in Fig. A.2

(c). Applying Eq. A.4 and using the expression for the quality factor of a series circuit

we find:

XP = XCc =
1

ωCc
and RP =

Z0

2
Q2

S where QS =
XS

RS
=

1

ωCcZ0/2

We can now combine the capacitances and resistances in parallel, defining new effective
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Figure A.2: Circuit representation of a capacitvely coupled quarter wave resonator. (a)
(b) The quarter wave resonator can be mapped to an equivalent parallel LCR tank circuit.
(c) Circuit, including coupling circuit, after application of the parallel-to-series mapping
derived in Appendix A.1.

capacitance and resistance:

Ceff = C + Cc and Reff =

(
1

R
+

1

RP

)−1

We can now calculate the quality factor of the parallel circuit:

QP =
Reff

ZLC
, where ZLC =

√
L

C
(A.5)

We know that quality factors will add in parallel. We can rewrite this total quality

factor as the parallel combination of the internal quality factor of the LC circuit and the

quality factor of the coupling circuit.

1

Q
=
ZLC

R
+

ZLC

Q2
SZ0/2

≡ 1

Qi
+

1

Qc
(A.6)

Finally, using the expression for the resonant frequency of the LC circuit, ω0 = 1/
√
LC,

we can rewrite the expression for the coupling quality factor, Qc

Qc =
Q2

SZ0

2ZLC
=
ZLC

Z0/2

(
C

Cc

)2

=
2C

ω0Z0C2
c

(A.7)

The same analysis can be done for an inductively coupled λ/4 resonator, however, an

additional step is required to map the coupling inductor to an inductive network. The
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details of this analysis can be found in [81].

A.3 IQ Mixer math

In this Appendix we work through the math to see how base-band waveforms output from

the AWG are mixed up to microwave frequencies with the help of an IQ mixer. This

derivation follows closely the work of [83, 84]. For convenience, the relevant trigonometric

identities are listed below:

cosα cosβ =
1

2
[cos(α+ β) + cos(α− β)] (A.8)

sinα sinβ =
1

2
[cos(α− β)− cos(α+ β)] (A.9)

For this analysis we’ll be a little sloppy and disregard the amplitude of the signals. The

point of this note is to gain intuition for how we’re able to synthesize fast arbitrary

waveforms at microwave frequencies. An IQ mixer is comprised of two mixers, a 90◦phase-

shifter, and two 3 dB splitters (Fig. A.3). Base-band pulses are input to the intermediate

frequency (IF) ports of the mixers, labeled I and Q. We’ll assume that both have frequency,

νIF. These input signals then take the form

f3(t) = fQ(t) = cos(2πνIFt) and f4(t) = fI(t) = sin(2πνIFt) (A.10)

A carrier tone, at microwave frequencies, is input to the local oscillator (LO) port of the

mixer. We’ll assume that this tone has the form

f0(t) = fLO(t) = sin(2πνLOt) (A.11)

We can now write down an expression for the waveform at each point in the mixer circuit

(indicated by the numbered nodes).

f1(t) = sin(2πνLOt+ π/2) = cos(2πνLOt) (A.12)
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Figure A.3: IQ mixer schematic.

f2(t) = f0(t) = sin(2πνLOt) (A.13)

f5(t) = f1(t)f3(t)

= cos(2πνLOt) cos(2πνIFt)

=
1

2
[cos(2π(νLO + νIF)t) + cos(2π(νLO − νIF)t)]

(A.14)

f6(t) = f2(t)f4(t)

= sin(2πνLOt) sin(2πνIFt)

=
1

2
[cos(2π(νLO − νIF)t)− cos(2π(νLO + νIF)t)]

(A.15)

f7(t) = f5(t) + f6(t)

= cos(2π(νLO − νIF)t)

(A.16)

We see that the signal output from the RF port of the IQ mixer will have a frequencies

de-tuned from the carrier frequency by the IF frequency.
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We can extend this analysis to the case where we input tones with two frequencies to

each of the I and Q ports of the mixer (applicable to the two-tone experiments in Section

11. Assume that waveforms input to the I and Q ports of the mixer now have the form

f3(t) = fQ = cos(2πνIF1t) + cos(2πνIF2t) (A.17)

f4(t) = fI = sin(2πνIF1t) + sin(2πνIF2t) (A.18)

We can calculate the frequency of the signals at nodes 5 and 6 with these new input tones.

f5(t) = f1(t)f3(t) = cos(2πνLOt)(cos(2πνIF1t) + cos(2πνIF2t))

=
1

2
[cos(2π(νLO + νIF1)t) + cos(2π(νLO − νIF1)t)]

+
1

2
[cos(2π(νLO + νIF2)t) + cos(2π(νLO − νIF2)t)]

(A.19)

f6(t) = f2(t)f4(t) = sin(2πνLOt)(sin(2πνIF1t) + cos(2πνIF2t))

=
1

2
[cos(2π(νLO − νIF1)t)− cos(2π(νLO + νIF1)t)]

+
1

2
[cos(2π(νLO − νIF2)t)− cos(2π(νLO + νIF2)t)]

(A.20)

Then the waveform at the output of the IQ mixer will be of the form

f7(t) = cos(2π(νLO − νIF1)t) + cos(2π(νLO − νIF2)t) (A.21)

We can see that waveforms with signals detuned from the carrier frequency by each of

the input IF frequencies will be output from the mixer. This treatment is a bit naive in

that it disregards the amplitude of the waveforms–effectively ignoring the possibility of

LO bleedthru and the image sideband.
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A.4 Hamiltonian discretization

A.4.1 Method of finite differences

The method of finite differences allows for analytically evaluating the first derivative of a

function. This result can further be chained to allow for estimation of the second derivative

of that function.

Theorem: For some function, f(x), and sufficiently small discrete steps, a, the second

derivative ∂2f(x)/∂x2 can be approximated as

∂2f(x)

∂x2
=
f(x+ a)− 2f(x) + f(x− a)

a2
(A.22)

Proof: From the definition of the first derivative we have that

∂f(x)

∂x
=
f(x+ a)− f(x)

a
and

∂f(x− a)

∂x
=
f(x)− f(x− a)

a

and similarly, we can approximate ∂2f(x)
∂x2 as

∂2f(x)

∂x2
=

1

a

(
∂f(x)

∂x
− ∂f(x− a)

∂x

)
=

(f(x+ a)− f(x))− (f(x)− f(x− a))

a2

which gives

∂2f(x)

∂x2
=
f(x+ a)− 2f(x) + f(x− a)

a2

A.4.2 Application to eigenenergy problems

Consider a Hamiltonian of the form H(q, δ) = T (q) + U(δ) for some kinetic energy, T (q),

and potential energy, U(δ), where q and δ are conjugate variables. Now, assume that the

kinetic energy takes the form T (q) = αq2 for some constant, α.
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Recall that q and δ are related via the transformation

q = −iℏ ∂
∂δ

.

Then, the Hamiltonian can be rewritten in terms of δ as

H(δ) = αℏ2
∂2

∂δ2
+ U(δ) (A.23)

Now if we discretize δ to be a range of linearly spaced values, (δ1, δ2, ..., δn−1, δn), with

step size, a, the Hamiltonian can be rewritten as a matrix of the form

H(δ) = αℏ2



∂2/∂δ21

∂2/∂δ22
. . .

∂2/∂δ2n−1

∂2/∂δ2n


+



U(δ1)

U(δ2)

. . .

U(δn−1)

U(δn)


And for sufficiently small step size, a, we can approximate ∂2/∂δ2i using the method

of finite differences, thus rewriting the Hamiltonian as

H(δ) = αℏ2
1

a



2δ1 −δ2 −δn

−δ1 2δ2 −δ3
. . .

−δn−2 2δn−1 −δn

−δ1 −δn−1 2δn


+



U(δ1)

U(δ2)

. . .

U(δn−1)

U(δn)


(A.24)

where the elements at the elements, −δn and −δ1 have been added by hand to enforce

cyclic boundary conditions. We now have a matrix for which we can numerically find the



140

eigenvalues and eigenvectors, remembering, of course that when choosing the step size,

a, there is a trade off between the accuracy of the solution and the size of the resulting

matrix (which will affect computation time).

This method of solving for the eigenenergies and eigenstates computationally is par-

ticularly powerful for systems where the potential is a complicated function depending on

only variable, δ, systems which would otherwise be difficult to solve analytically.

The conjugate variables q and δ physically represent charge and phase respectively.

Let us consider superconducting circuits consisting of an inductive element (whether that

be a linear inductor, a Josephson junction, or some composite element consisting thereof)

shunted by a capacitor. We can take the capacitive energy to be the kinetic energy,

T (q) = q2/2C, associated solely with the charge, while the inductive energy (potential

energy), U(δ), will be associated with the phase.

The Hamiltonian can then be readily rewritten to be of the form given in Eq. (A.23).

H =
ℏ2

2C

∂2

∂δ2
+ U(δ) (A.25)

Let us apply the Hamiltonian discretization method for determining the energy eigen-

values and eigenstates to a few relevant examples, starting with one of the simplest super-

conducting circuits, for which we know the solution: the quantum harmonic oscillator.

Values used to generate each of the plots in this Section are given in Table A.1.

Circuit EJ L or EL C or EC E2

LC Oscillator - 8.2 nH 64.5 fF -
Transmon 20 GHz - 300 MHz -
Fluxonium 3.4 GHz 130 MHz 480 MHz -

0− π / cos(2δ) - - 0.002 K 0.2 K

Table A.1: Parameters used for simulations in this section. Quantities quoted in units of
frequency are divided by Planck’s constant while those quoted in units of temperature are
divided by Boltzmann’s constant.
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Figure A.4: (a) Circuit representation of the quantum harmonic oscillator. (b) Quantum
harmonic oscillator wavefunctions, offset by the energy eigenvalues, superimposed on the
harmonic oscillator potential. Energies eigenvalues are normalized by the harmonic oscil-
lator frequency, ω0 = 1/

√
LC. The x-axis is normalized such that δ = 2πΦ/Φ0 is directly

comparable to the phase variable used for the Josephson potential in subsequent sections.

A.4.3 LC oscillator

In this case the potential energy is that of a linear inductor, given by U(δ) = δ2/2L. The

Hamiltonian then takes the familiar form

H(δ) =
ℏ2

2C

∂2

∂δ2
+
δ2

2L
(A.26)

Evaluating Eq. A.24 with this potential, and numerically solving for the eigenvectors and

eigenvalues, we solve for the eigenenergies and wavefunctions. The result is shown in Fig.

A.4. The wavefunctions are plotted atop the harmonic oscillator potential, offset by the

energy, En. As expected they take the form En/ℏω = n+ 1
2 [64]. From here, we can work

through the same analysis for various superconducting qubits.

A.4.4 Transmon

The Transmon [5] closely resembles the LC oscillator, but with a Josephson junction

in place of the linear inductor (see Fig. A.5 (a)). Associated with the junction is the
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Figure A.5: (a) Circuit representation of the transmon qubit. (b) Wavefunctions of the
transmon qubit, offset by the energy eigenvalues, plotted over top of the Josephson po-
tential. The harmonic oscillator potential (grey dashed line) is plotted alongside the
Josephson potential. Energies are normalized in this case by the transmon frequency,
ω0 =

√
8ECEJ − EC

Josephson potential, U(δ) = −EJ cos(δ), so the Hamiltonian takes the form

H(δ) =
ℏ2

2C

∂2

∂δ2
− EJ cos(δ) (A.27)

Again, evaluating Eq. A.24, with the transmon potential, and diagonalizing numerically

we find the eigenenergies and wavefunctions (shown in Fig. A.5 (b)). The harmonic

oscillator potential is shown as a dashed grey line. We see that when considering only the

lowest energy states, the harmonic oscillator is a reasonable approximation of the transmon

circuit. We note also, the characteristic anharmonicity of the transmon, a necessity which

makes it possible to address only the two lowest lying states, making this circuit suitable

for quantum computation.

A.4.5 Fluxonium

Forging ahead with progressively more exotic superconducting qubits, we arrive at the

fluxonium [7, 61]. The fluxonium circuit (shown in Fig, A.6 (a)) consists of a Josephson

junction in parallel with an inductance and capacitance. The capacitance can either be

solely due to the overlap capacitance of the Josephson junction or it there can be an added
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Figure A.6: (a) Circuit diagram of the fluxonium qubit. (b) The Fluxonium potential is
plotted shaded in gray. The eigenstates are shown, offset by the eigenenergies.

capacitance [61].

H(δ) =
ℏ2

2C

∂2

∂δ2
− EJ cos(δ) +

δ2

2L
(A.28)

Again, turning the crank we solve for the eigenenergies and eigenvalues (Fig, A.6 (b)). We

see that when considering only the two lowest energy states we will have a double well

potential, similar to the 0−π circuit. Again, the two lowest lying states will be symmetric

and anti-symmetric superpositions of wavefunctions localized in the two wells. As a result,

long inter-well relaxation times have been demonstrated in capacitvely-shunted or ‘heavy’

fluxonium qubits [61].

A.4.6 0− π

The 0− π qubit has a π-periodic potential, U(δ) = −E2 cos(2δ), as the name suggests.

H(δ) =
ℏ2

2C

∂2

∂δ2
− E2 cos(2δ) (A.29)

Working through the Hamiltonian discretization in the same way as above (Fig. A.7 (b)),

we see that similar to the fluxonium the two lowest-lying energy states will be nearly

degenerate superpositions of symmetric and anti-symmetric wavefunctions. Further, we

see that we will have energy doublets, and that the splitting between states in a doublet

will increase as we approach the top of the potential barrier. This circuit is what we expect
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Figure A.7: (a) Charge-parity qubit circuit diagram consisting of a π-periodic Josephson
element shunted by a capacitance. (b) The cos 2δ potential is shown shaded in gray. The
eigenstates of the charge-parity qubit are shown, offset by the eigenenergies.

for a plaquette device biased at exactly Φ0/2.
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Appendix B

Ancillary experimental details

B.1 Josephson junction fabrication

While the procedure for fabricating Josephson junctions is well known in the supercon-

ducting qubit community, it may be new for a reader coming from the detector community.

As a results, it deserves a detailed discussion. A Josephson junction, that is two supercon-

ducting films separated by a weak link, has numerous implementations: as a point contact

or constriction, as two superconductors separated by a normal metal or by an insulating

barrier, among others [3].

Most commonly used by academic groups in the superconducting qubit community are

Al-AlOx-Al Josephson junctions, with the benefit that the two superconducting electrodes

and the AlOx tunnel barrier can be deposited / grown in a single tool, without breaking

vacuum. Nb junctions are also fairly common, however, they typically require multiple

fabrication steps, and the use of a lossy dielectric scaffolding. As a result, the use of

Nb junctions is often limited to applications that require a higher gap material than

Al, allowing operation at higher temperatures or access to higher frequencies. Recently,

superconducting qubits utilizing Nb junctions have reached coherence times of more than

60 µs, corresponding to a quality factor of over 10 × 105 [85, 86]. This was possible due

to improvements made to the fabrication process. For the purposes of this thesis, we’ll

restrict our discussion to Al-AlOx-Al junctions deposited via double-angle evaporation.
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Figure B.1: Josephson junction fabrication details. (a) SEM of an array of large-area
Josephson junctions deposited via double-angle evaporation. (b) Top-down view of the
e-beam lithography pattern used for creation of the Josephson junctions. Blue regions
indicate the ’main’ dose and orange regions indicate the ’window’ dose. Below, a cross-
sectional side-view of the resist stack after development is shown. (c) Wafer orientation
during deposition of the bottom electrode (first deposition) and top-electrode (second
deposition).

The process for creating Al-AlOx-Al Josepson junctions typically requires the use of

an evaporator where one can vary the substrate angle in situ, and a resist bridge. The

first evaporation takes place at an angle, allowing the metal to be projected forward under

the resist bridge. After the bottom-electrode is deposited, the sample is exposed to O2

gas for a fixed pressure and time in order to grow the insulating oxide barrier. Finally,

the top-electrode is deposited with the sample normal to the source, creating the overlap

junctions.

The resist bridge is critical for junction fabrication via this method, and it is created

with the use of a bi-layer e-beam resist stack. MMA EL 11 underneath PMMA 950 A3 were

the resists used for the fabrication of junctions discussed in this thesis. MMA EL 11 can be

exposed at a dose that is about one third of the dose required to expose PMMA. As such,

one can use window dosing to create an undercut (or bridge) by explicitly exposing the

lower MMA layer while leaving the PMMA layer unaffected. A top-view of the pattern
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used for creating arrays of Josephson junctions, similar to those used in this thesis is

shown in Fig. B.1 (b). The orange regions are areas where the lower ’window’ dose is

applied while blue areas are where the higher ’main’ does is applied, exposing both the

MMA and PMMA. After exposure, the pattern is developed in a cold mixture of IPA:DI

(3:1) [87]. Cold development is used to increase resist contrast and decrease variations in

junction area caused by the roughness of the resist sidewalls. Development was done at 2

C because it was readily achievable with an ice bath. A more robust fabrication process

might make use of a chilled circulating bath in order to reach lower temperatures and a

more spatially consistent temperature in the developer. The contrast of PMMA has been

shown to increase with decreasing temperature down to 17 C [88]. A cross-sectional view

of the post-development resist stack is shown on the bottom of Fig. B.1 (b), with the

resist bridge shown in pink. The dashed diagonal blue lines show where the first metal

layer would be projected. The orange dashed lines show where the second metal layer

would be deposited.

After evaporation the excess metal film is lifted-off in NMP at 80 C. It is left un-

touched in NMP until the excess metal has fully cleared from the surface. The sample is

then transferred to a fresh (room-temperature) beaker of NMP and sonicated for 3 min.

The sample is subsequently transferred to a beaker of acetone and sonicated for 3 min

before being sonicated in IPA for 3 min and finally dried with N2.
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