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Abstract

Developing a fast, high-fidelity readout of superconducting quantum bits (qubits) makes

significant demands of the cryogenic amplification chain, where the first stage ampli-

fier must have sufficient sensitivity to resolve the state of the qubit and enough gain to

overcome the noise of subsequent stages of amplification. Additionally, the architecture

of a scalable quantum computer requires an amplifier with a large enough bandwidth

and dynamic range to simultaneously measure multiple qubits without sacrificing perfor-

mance. In this thesis, we describe a novel low-noise phase-insensitive linear amplifier at

microwave frequencies based on the Superconducting Low-Inductance Undulatory Gal-

vanometer (SLUG), an amplifier capable of meeting the demands of the superconducting

qubit community. We discuss the numerical optimization of the SLUG amplifier and cal-

culate the expected amplifier gain and noise temperature. We walk through the amplifier

design and fabrication process before discussing how to fully characterize the fabricated

device. We report on amplifiers with measured gain of 10 to 15 dB, bandwidths from

50 to 100 MHz, and added system noise below 2 quanta. Next, we describe the qubit-

cavity system and the limits of a dispersive quantum measurement using circuit quantum

electrodynamics. Finally, we report on experiments where a SLUG amplifier is used to

measure the state of a superconducting qubit, demonstrating improved measurement

signal-to-noise ratios of 10 dB and a dynamic range that is an order of magnitude better

than any available amplifier currently being developed.
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Chapter 1

Introduction

The accomplishments of the computing and information processing fields not only

drive the modern day economy but significantly impact the way we carry out our lives.

Beginning with Bardeen and Brattain’s seminal work at Bell Labs in 1947, the semi-

conductor industry has transformed the transistor from a table-top experiment to a

logical-bit that works in concert with millions of identical transistors, all contained in

a processor the size of a quarter. The impressive trajectory of the transistor provides

important context when considering the progress of quantum computers. It has become

technologically feasible to isolate and address individual quantum systems over the last

few decades, resulting in a wide variety of experiments that have confirmed the theoretical

underpinnings of quantum mechanics and have opened the door for the field of quantum

information. While a quantum processor capable of solving classically intractable prob-

lems is hardly just over the horizon, there has been significant progress that has inspired

cross-disciplinary innovation along with the drums of popular science. There are many

different quantum computing architectures being developed, but in this thesis we focus

on an architecture built with superconducting quantum bits (qubits).
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The rapid development of superconducting quantum electronics has motivated a

search for near quantum-limited microwave amplifiers for the low-noise readout of of

qubits and linear cavity resonators [1, 2]. It has long been recognized that devices rely-

ing on the dc-superconducting quantum interference device (dc-SQUID) can achieve noise

performance approaching the fundamental quantum limit imposed on phase-insensitive

amplifiers: namely, the amplifier must add at least half a quantum of noise to the sig-

nal it amplifies [3]. For comparison, state of the art semiconductor amplifiers based on

High Electron Mobility Transistors (HEMTs) have achieved impressive noise tempera-

tures on the order of 2.5 K, or roughly 20 times the quantum limit, with an instantaneous

bandwidth spanning 1 to 10 GHz. Such HEMTs are broadly employed in the cryogenic

amplification chain of many experiments within the superconducting electronics commu-

nity. However, their noise performance is limited by the heating of electrons in the FET

channel and recombination noise, making significant improvements in noise performance

difficult.

Discovered in 1964 by Jaklevic et al. [4] at Ford Motor, the dc-SQUID has been

employed as a low-noise amplifier for many different applications, such as in dark matter

searches [5], low-field MRI [6], qubit readout [7], magnetic characterization of thin films

[8, 9], and for sensitive biomagnetic measurements [10, 11]. Theoretically, amplifiers

relying on the dc-SQUID should be capable of amplifying signals from dc to tens of GHz,

offering an attractive alternative to semiconductor based architectures. However, it has

proven difficult to efficiently couple the input signal to the dc-SQUID when the operating

frequency exceeds 1 GHz.

We will discuss the limitations of the dc-SQUID in great detail within Section 2.5, but

for the remainder of this introductory chapter we will focus on how quantum computing

in particular benefits from a quantum limited microwave amplifier.
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Z

X

Y

Figure 1.1: Bloch sphere demonstrating the computational space of a qubit, with the |0〉
and |1〉 state at the poles and the state vector |Ψ〉 lying on the surface of the sphere.

1.1 Quantum Bit

A quantum computer is comprised of logic gates that operate on an ensemble of

quantum bits. A bit is the most basic unit of classical logic and can occupy one of two

discrete states, 0 or 1. A quantum bit, or ‘qubit,’ on the other hand, can be an arbitrary

superposition of the eigenstates |0〉 and |1〉 , or |Ψ〉 = a0|0〉+ a1|1〉, where |a0|2 and |a1|2

are the occupation probabilities of the |0〉 and |1〉 state, respectively. The Bloch sphere

in Figure 1.1 illustrates the computational space of a single qubit, where the state vector

|Ψ〉 can lie anywhere on the surface of the sphere, and single qubit gates are realized with

arbitrary rotations about the three axes.

Where n classical bits can only exist in one of the 2n possible states, a quantum pro-

cessor with n qubits can be placed in a complex superposition state of all 2n permutations,

containing exponentially more information than a conventional processor. Unfortunately,

expanding this computational space does not lead to a universal computational speedup;
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however, there are certain classically intractable problems that benefit from known quan-

tum algorithms. For example, Shor’s algorithm can factor large numbers exponentially

faster than its classical counterpart [12], providing a tool for cracking the RSA encryption

protocol [13]. A quantum computer could also be used for large scale quantum simula-

tions of many body systems with over a million degrees of freedom [14]. Fully exploring

the field of quantum information is beyond the scope of this thesis, but we encourage the

intrepid reader to pick up Nielsen and Chuang [15], or for a more experimentally driven

approach we recommend the theses by Jerry Chow [16], Daniel Slichter [17], and Jörgen

Lisenfeld [18].

A qubit is simply a pair of addressable quantum levels. The canonical example is an

electron in a magnetic field, with the discrete energy levels given by the Zeeman splitting.

There are many qubit architectures being actively studied: ensembles of nuclear spins

[19], trapped ions [20], and quantum dots [21, 22], to name a few. For this thesis we are

interested in qubits that exploit the macroscopic quantum behavior of superconducting

circuits.

1.2 Superconducting Qubits

Superconducting qubits [23, 24] are electrical circuits engineered to have discrete,

anharmonic spectra – an “artificial atom” fabricated using standard lithographic tech-

niques. The superconducting qubit is an integrated circuit constructed from inductors,

capacitors, and transmission lines, along with the Josephson junction [see Section 2.2],

which behaves as a non-linear, dissipationless inductor. A quantum computer capable

of breaking RSA encryption requires thousands, if not millions of qubits [25], making

scalability a central concern. The superconducting architecture has the benefit of flexi-
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bility and exploits mature fabrication techniques already developed by the semiconductor

industry.

However, these advantages come at the price of a tighter coupling to environmental

noise sources, resulting in low coherence times compared to more established architec-

tures. Years of materials research (e.g. developing low-loss dielectrics [26], cleaning up

the superconductor-substrate interface [27, 28]), along with aggressive filtering in com-

bination with clever circuit engineering have helped minimize the effect environmental

noise sources have on the qubit’s degrees of freedom. Because of these efforts, over the

last 15 years coherence times have dramatically increased, from the original Cooper pair

box qubit [29], where the group at NEC in Japan observed coherent oscillations on the

order of 1 ns [30], to the most results with the transmon [31] where coherence times of

order 50 µs were measured [32, 28].

1.3 Circuit QED

We use the toolbox provided by circuit quantum electrodynamics (circuit QED) to

address and measure our superconducting qubit. Circuit QED, first developed by the

Yale group [33, 34, 1], is a direct analogue of cavity QED used in atomic physics. Where

atomic physicists use atoms coupled to the electromagnetic field inside a Fabry-Perot

cavity [Figure 1.2(a)], we use superconducting qubits coupled to the electric field in

a planar transmission line resonator [Figure 1.3(b)]. As illustrated in Figure 1.2(a),

cavity QED uses a Fabry-Perot cavity bounded by two semitransparent mirrors, where

the length of the cavity and the transparency of the mirrors determine the resonant

frequency and linewidth of the transmitted photons. An atom in the cavity interacts
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Figure 1.2: (a) The electric field in a Fabry-Perot cavity interacting with a qubit, where
κin (κout) is the coupling strength at the input (output) of the cavity; g is the coupling
strength between the qubit and the cavity; and γ is the rate at which the qubit loses
information to the environment. (b) The frequency response of the photons transmitted
through the cavity for the qubit in the |0〉 and |1〉 state, where 2χ is the difference in
frequency between the dressed states of the cavity.
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λ/2

Figure 1.3: (a) Circuit schematic of a λ/2 transmission line resonator with characteristic
impedance Z0 coupled to the outside world via two capacitors: Cin and Cout. (b) Cartoon
layout of the schematic in (a), where the resonator is in the coplanar geometry, and the
qubit sits at one of the voltage anti-nodes (not to scale).(c) Power transmission through
the cavity for the qubit in the |0〉 and |1〉 . state.

with the trapped photons, and a measurement of the photons leaking out of the cavity

allows one to probe the state of the atom.

As illustrated in Figures 1.3(a) and (b), in circuit QED the cavity is replaced by a

λ/2 transmission line resonator that interacts with the outside world via two capacitors,
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Cin and Cout. A superconducting qubit sits at a voltage anti-node in the resonator, where

the capacitance between the qubit and the resonator sets the interaction strength g. We

measure a maximum number of photons leaking out of the resonator (RFout) when the

impinging signal (RFin) is on resonance with the cavity-qubit system.

1.4 Qubit Measurement

The qubit isn’t very interesting in a vacuum – one must be able to measure its state.

A measurement probabilistically maps a superposition of possible states onto a single

outcome. The qubit state |Ψ〉 = a0|0〉 + a1|1〉 lies on the surface of the Bloch sphere,

but the classical meter can only access one eigenstate of the system. For one qubit, this

means we measure the z-axis component of |Ψ〉, returning either the |0〉 or the |1〉 state.

By making repeated measurements we gain access to |a0|2 and |a1|2.

A projective quantum non-demolition (QND) measurement leaves the qubit in its

measured eigenstate – e.g. if one measures |1〉 the state will remain in |1〉 upon repeated

measurements. We introduce this concept with a general Hamiltonian that describes the

qubit, the measurement, and the interaction between the two:

Ĥ = Ĥq + Ĥm + Ĥint. (1.1)

Mathematically, a QND measurement M̂ commutes with the full Hamiltonian, meaning:
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[Ĥq, M̂ ] = 0, (1.2)

[Ĥm, M̂ ] = 0, (1.3)

[Ĥint, M̂ ] = 0. (1.4)

A quantum system can exist simultaneously in multiple eigenstates. A strong QND

measurement “instantaneously” forces the system into one of its eigenstates, giving the

observer direct access to the commuting eigenstates of the system, while information

about the eigenstates of the non-commuting measurements (σ̂X , σ̂Y ) are lost. Looking

back at the Bloch sphere [1.1], a projective measurement of σ̂Z probabilistically collapses

the state vector |Ψ〉 on to the z-axis; the initial x and y-axis components of |Ψ〉 are lost

as a direct consequence of the measurement. Repeatedly measuring σ̂Z returns the same

result, while interleaving non-commuting measurements (e.g. σ̂Y→ σ̂Z→ σ̂Y ) will return

uncorrelated results.

1.5 Jaynes-Cummings Hamiltonian

The Jaynes-Cummings Hamiltonian [35] describes the qubit-cavity system of Sec-

tion 1.3: a generalized two level system, or qubit, with an energy splitting (~ω10) inter-

acting with photons in a resonator with resonance frequency ωr. After making the rotat-

ing wave approximation [see A.1], the general measurement Hamiltonian [Equation 1.1]

takes the following form:
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ĤJC =
1

2
~ω10σ̂Z + ~ωr

(

â†â +
1

2

)

+ ~g(âσ̂+ + â†σ̂−), (1.5)

where the first term 1
2
~ω10σ̂Z describes the qubit as a two-level system, the second term

~ωr(â
†â+1/2) describes the cavity (or resonator), and ~g(âσ̂++ â†σ̂−) is the interaction

term. Here, â† and â are the harmonic oscillator creation and annihilation operators,

while σ̂+ and σ̂− are the qubit raising and lower operators given by 1
2
(σ̂X ± iσ̂Y ).

The special case where the qubit is far detuned from the cavity, such that ∆ ≡

ω10 − ωr ≫ g, is known as the dispersive regime. In this limit, the qubit and cavity do

not exchange energy, meaning the eignenstates of the system can be well approximated

by the product states of the qubit and cavity. After performing an expansion to first

order in g/∆ [see A.2.1], ĤJC becomes:

Ĥdisp =
1

2
~

(

ω10 +
g2

∆
+

g2

∆
â†â

)

σ̂Z + ~ωr

(

â†â +
1

2

)

, (1.6)

where the qubit’s frequency is now shifted by g2/∆ - the zero-point energy of the cavity

field, known as the Lamb shift - plus the photon dependent Stark shift g2â†â/∆, with

â†â being the number of photons in the cavity. To understand how the qubit influences

the cavity resonance, we recast Ĥdisp into the following form:

Ĥdisp =
1

2
~ω10σ̂Z + ~

(

ωr +
g2

∆
σ̂Z

)(

â†â+
1

2

)

, (1.7)
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where the cavity frequency is shifted by the state dependent ±χ = ±g2/∆, know as

the dispersive shift. In consequence, probing the resonance of the cavity measures the

projected state of the qubit. As illustrated in Figures 1.2(b) and 1.3(c), one can easily

distinguish the |0〉 from the |1〉 state as long as the dispersive shift is larger than the

line width of the cavity (2χ > κ). Also note that each term in the dispersive form

commutes with a projective measurement onto the z-axis, such that [Ĥdips, σ̂Z ] = 0. This

satisfies the conditions of Equation 1.4, meaning an observation of σ̂Z is a projective-

QND measurement. Experimentally, one would probe the cavity at a fixed frequency that

maximizes distinguishability of the qubit states. The signal leaving the resonator must

then be amplified and appropriately filtered for data processing with room temperature

electronics.

QND measurements of superconducting qubits have been successfully demonstrated

[36, 37, 38, 39], but performing a QND measurement with high single-shot fidelity is not

trivial. Single-shot fidelity is a metric of our ability to faithfully resolve the state of the

qubit in a single measurement. If one interrogates the cavity with a small signal, the

noise of the measurement’s amplification chain will drown out the signal, resulting in

low fidelity. Driving the resonator strongly induces qubit state mixing, also resulting in

a reduced fidelity. As discussed in Section A.2.2, the dispersive approximation breaks

down as the number of photons interacting with the qubit in the cavity approaches ncrit,

defined as:

ncrit =
∆2

4g2
. (1.8)
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The classical signal measured by the amplification chain will be on the order of -120

dBm1. A power of this magnitude can easily be measured if we are able to average away

the noise for an arbitrary amount of time. Unfortunately, we are limited to time scales on

the order of the qubit relaxation rate T1
2 – the qubit |1〉 state will relax to |0〉 , reducing

the fidelity of the measurement. This limitation puts a large demand on the amplification

chain noise budget – the lower the noise, the quicker we are able to resolve the state of

the qubit, giving us a greater readout fidelity. In Section 6.3, we discuss in great detail

how the probe signal is modified by the qubit, along with the expected distinguishability

and measurement fidelity for a given measurement setup.

1.6 Multiplexed Readout

A scalable architecture must incorporate some flavor of multiplexed readout; a sepa-

rate amplification chain for each qubit is impractical when the processor grows to hun-

dreds of qubits. A simple example capacitively couples a series of resonators with different

lengths to a common feed line, as illustrated in Figure 1.4. Each resonator is coupled to

a separate qubit, giving us the ability to probe the state of each qubit individually using

one amplification chain. This could be done using standard modulation techniques, where

the applied microwave tone RFin has spectral components at each resonance. The am-

plified tone is then captured and demodulated, giving us access to the complex spectral

components of each resonator.

A multiplexed readout puts additional demands on the amplification chain. For a

simultaneous readout, the amplification chain must have a large enough instantaneous

1Power in dBm is a logarithmic power in watts referred to 1 mW, PdBm = 10 log 10(P/1 mW). A
measurement of -120 dBm is the the same as measuring 1 fW.

2T1 is the rate at which the excited qubit exchanges energy with the environment.
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Figure 1.4: (a) Cartoon of a possible multiplexed readout, where a series of λ/4 trans-
mission line resonators of different lengths are capacitively coupled to a common feedline.
With each resonator coupled to a different qubit, one can probe the state of each qubit
using a single amplification chain, where (b) shows the transmitted power through the
feedline for the different possible qubit states.

bandwidth to be sensitive to each resonator attached to the feedline. Additionally, more

resonators mean the signal to be amplified will carry more power, which must be handled

without saturating3 the amplification chain.

The example in Figure 1.4 couples a qubit to a λ/4 resonator instead of the λ/2

devices described in the previous sections. A shorter resonator allows for more microwave

components on a single chip; additionally, we use this geometry for measuring a qubit

Chapter 7 below. As illustrated in Figure 1.5, the λ/4 resonator has a standing wave

3Saturation is when the amplified signal does not grow linearly with the input signal. A compressed
signal with result in a lower signal-to-noise ratio, resulting in a lower measurement fidelity.
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Figure 1.5: (a) Schematic of a λ/4 transmission line resonator capacitively coupled to a
common feedline. (b) A cartoon of the resonator in the coplanar waveguide geometry,
where the resonator is short-circuited on the end without the capacitor. A voltage anti-
node occurs on the capacitor end. The qubit sits at the voltage anti-node for maximum
coupling to the electric field in the cavity. (c) In this geometry the transmitted power
goes to zero when the applied microwaves are on resonance with the qubit-cavity system.

with a voltage maximum at the capacitor and a voltage minimum on the short-circuited

side of the resonator. On resonance, the cavity maximally absorbs microwaves on the

feedline, leading to a dip in transmitted power as a function of frequency.

1.7 Amplification Chain

It should now be clear that a high-fidelity QND readout requires an ultra-low noise,

broadband amplification chain, capable of a simultaneous readout of multiple qubits

without saturating the signal. To turn the small number of photons leaking out of the
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cavity-qubit system into a signal that can be processed by room temperature electronics,

a multistage amplification chain is needed, with a total gain on the order of 100 dB. Each

amplifier in the chain will add noise to the total signal.

1.7.1 Johnson-Nyquist Noise

The classical noise generated by the thermal fluctuations of electrons in a resistor,

known as Johnson-Nyquist noise [40, 41], has a white voltage spectral density:

SN
V (ω) = 4kBTR, (1.9)

where kB is the Boltzmann constant, and SN
V has units of V2/Hz. When attached

to a matched, noiseless load, the current spectral density in the circuit is just SN
I =

SN
V /(2R)2 = kBT/R. Multiplying the current spectral density by the resistance R gives

us an expression for the power spectral density (watts per unit-bandwidth) dissipated in

a matched load:

S(ω) = kBT. (1.10)

A classical treatment of the noise returns a spectral density symmetric in frequency,

where S(ω) = S(−ω), which physically means that a classical resistor is a perfect black-

body, emitting (positive frequency) and absorbing (negative frequency) noise power at

the same rate. However, in the limit where kBT ≪ ~ω, one must take quantum me-

chanics into account when describing the statistics of the fluctuators. By applying the
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quantum fluctuation-dissipation theorem, we get the following complete expression for

the symmetric4 voltage spectral density [43]:

SN
V = 2~ωR coth

(

~ω

2kBT

)

. (1.11)

We recover the classical form of Equation 1.9 in the limit that kBT ≫ ~ω. As T → 0,

Equation 1.11 becomes 2~ωR – the noise due to the zero-point energy of the electric-field,

which is similar in origin to the energy stored in a harmonic oscillator in the absence of

excitations. For experiments in this thesis (T ≈ 40 mK, f ≈ 6 GHz), we will be well into

the quantum regime. Following the same analysis as above, one can write down the full

form of the power spectral density dissipated in a matched load:

S(ω) =
~ω

2
coth

(

~ω

2kBT

)

, (1.12)

which reduces to ~ω/2 for T = 0, meaning that in the best case scenario of operating

the experiment at absolute zero, our amplification chain will still be sensitive to a half

quantum of noise per unit bandwidth. Conventionally, the noise contributions of an

amplification chain refer to an effective temperature Teff of the noise source, where:

Teff = S(ω)/kB. (1.13)

4The symmetric voltage spectral density is S(ω < 0)+S(ω > 0) = 2~ωR(nBE(|ω|)+2~ωR(nBE(|ω|+
1), where nBE(ω) = 1/(exp(~ω/kBT )− 1) is the Bose-Einstein occupation probability. For an excellent
review on quantum noise, see Clerk et al. [42].
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Figure 1.6: The input of the amplifier is sensitive to both the noise and the signal we’re
interested in analyzing. The amplifier with gain G will output the original voltage traces
multiplied by

√
G, along with noise generated internally by the amplifier.

Likewise, we recast the spectral density into an effective number of noise quanta:

neff =
S(ω)

~ω
. (1.14)

1.7.2 Added Amplifier Noise

An amplifier with power gain G takes a voltage trace Vin(t) at its input, and outputs

an amplified signal Vout(t) =
√
GVin(t). Since an amplifier will uniformly amplify both

the input noise and the signal, the signal-to-noise ratio (SNR) will not improve. In fact,

the SNR will always get worse, as the amplifier also adds noise Samp(ω), where Samp(ω)

is typically referred to the input of the amplifier, with an effective noise temperature TN ,

or added number of noise quanta nN :
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Samp(ω) = kBTN = ~ωnN . (1.15)

For a bandwidth B, the noise power PN measured at the output of the amplifier in

Figure 1.6 is:

PN = kB(Teff + TN)GB = ~ω(neff + nN )GB. (1.16)

This added noise can come from many different sources (e.g.electron-hole recombina-

tion in semiconductors, thermal fluctuations of charge carriers in resistors), but even the

best amplifier falls victim to the consequences of the Heisenberg uncertainty principle,

which puts a fundamental limit of an added half quantum of noise for a phase-insensitve

amplifier [44]. A quantum limited amplifier is an amplifier with added noise SQ
amp(ω):

SQ
amp =

1

2
~ω. (1.17)

1.7.3 Noise Budget

It is important to calculate the noise budget of an amplification chain in order to

identify the bottlenecks of a measurement setup. Take the three amplifier example shown

in Figure 1.7. The total noise power generated by the chain is:



18

G
1

n
N,1

G
2

n
N,2

G
3

n
N,3

n
bath

P
N,out

Figure 1.7: A chain of three amplifiers, each with its own gain Gk and added noise nN,k

where k is kth amplifier stage.

PN,out = ~ω([(nbath + nN,1)G1 + nN,2]G2 + nN,3)G3B

= ~ω[(nbath + nN,1) +
nN,2

G1
+

nN,3

G1G2
]G1G2G3B

= ~ω(nbath + nsys)GsysB, (1.18)

where the effective gain Gsys and added noise nsys are:

Gsys = G1G2G3, (1.19)

nsys = nN,1 +
nN,2

G1
+

nN,3

G1G2
, (1.20)

with a SNR of:

SNR =
PinGsys

~ω(nbath + nsys)GsysB

=
Pin

~ω(nbath + nsys)B
. (1.21)
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Note that a properly engineered amplification chain relies on the first stage amplifier

to maximize SNR, where the noise of the amplification chain is set by nN,1 so long as

G1nN,1 ≫ nN,2 and G1G2nN,1 ≫ nN,3. Say the second stage amplifier is a state-of-the-art

HEMT amplifier, with gain of 30 dB and an added noise of 15 quanta at 6 GHz. A first

stage amplifier with gain of 20 dB will reduce the HEMT’s contribution to nsys from 15

quanta down to 0.15 quanta of added noise.

1.8 Josephson Based Parametric Amplifiers

There has been significant recent progress in the development of low-noise Josephson

parametric amplifiers (JPAs) [45, 46, 47, 48, 49] including such milestones as demon-

strating quantum feedback control for the stabilization of Rabi-oscillations [50], and the

observation of quantum jumps of the projected qubit state [39]. Because these amplifiers

squeeze the input state, they can achieve added noise numbers for one field quadrature be-

low the standard quantum limit of half a quantum. Moreover, these devices operate with

negligible dissipation, circumventing the practical problems associated with hot-electron

effects that are intrinsic to devices that operate in the finite-voltage regime.

For a complete review of JPAs, please consult R. Vijay’s thesis [49]. Gain in a

parametric amplifier is achieved by driving a parameter of the amplifier system strongly

with a pump tone. Due to the non-linearity of the system, some of this pump energy gets

transferred into another frequency mode, chosen to be the signal frequency. The JPA

is simply an anharmonic oscillator, with a non-linearity introduced by the presence of a

Josephson junction. A JPA is a one port network, where the amplified signal is reflected

off the JPA. Since the amplifier operates in reflection mode with a microwave bias, the

measurement chain must include a handful of bulky microwave components (isolators,



20

circulators, directional couplers, etc.) that introduce loss between the measured qubit

and the amplifier. JPAs also exhibit low gain-bandwidth products (50 MHz bandwidth

with about 20 dB gain) and a limited dynamic range (saturating with approximately

-120 dBm input signals). While the noise performance of the JPA is well suited for

the readout of one qubit, its limitations make the JPA unsuitable for the large scale

multiplexed readout of an ensemble of qubits. Another flavor of parametric amplifier

is the traveling wave parametric amplifier (TWPA), which relies on many Josephson

junctions embedded in a transmission line [51]. The TWPA is a non-reciprocal two-port

device which has demonstrated broadband amplification. In principle, the TWPA should

be a quantum limited amplifier with a bandwidth that exceeds two GHz. It isn’t clear

yet if the dynamic range of TWPA is better than a JPA.

1.9 Outline of Thesis

The rest of this thesis is organized as follows: in Chapter 2 we’ll discuss some funda-

mentals of superconducting electronics, with a focus on the dynamics of the resistively

and capacitively shunted Josephson junction and the dc SQUID. In Chapter 3, we’ll intro-

duce the superconducting low-inductance undulatory galvanometer (SLUG) and discuss

its optimized gain and noise performance as an amplifier. In Chapter 4, we’ll give an

overview of steps involved in fabricating the SLUG amplifier, including a discussion of

our circuit design choices. Measurements of the SLUG amplifier gain and noise perfor-

mance are discussed in Chapter 5. In Chapter 6 we briefly discuss the theory behind

the transmon qubit, and finally in Chapter 7 we go over the measurements of the qubit,

comparing the single shot readout fidelity with and without the SLUG amplifier.



21

Chapter 2

Fundamentals of Superconducting

Electronics

As described in 1957 by Bardeen, Cooper, and Schrieffer in their Nobel Prize winning

work [52], the electrons of some metals undergo a phase transition at a critical tem-

perature TC , forming the superconducting state. Below TC , electrons of opposite spins

and momenta form Cooper pairs due to an attraction mediated by lattice phonons. The

paired electrons form spin-zero bosons, and it follows that the charge carriers of the con-

ductor condense into a state that can be described by a single quantum mechanical wave

function:

Ψ(~r, t) = n(~r, t)1/2eiθ(~r,t), (2.1)

where θ(~r, t) is the phase of the wave function and n(~r, t) is the Cooper pair density.
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As H. Kamerlingh Onnes first observed in 1911 [53], the first hallmark feature of

superconductivity is the absence of electrical resistivity below TC . Perfect conductiv-

ity has been further demonstrated by experiments that measure persistent currents in

superconducting rings, placing a lower bound on the characteristic decay time of 105

years.

Type I superconductors also exhibit perfect diamagnetism, known as the Meissner

effect [54], where the superconductor expels magnetic field as it is cooled through TC ,

which implies the existence of a critical magnetic field HC that destroys superconduc-

tivity. This behavior forces the supercurrent to the edges of superconductor, where the

magnetic field is exponentially screened from the interior of the bulk superconductor

with a decay constant known as the temperature dependent London penetration depth

λL [55].

2.1 Kinetic Inductance

While a superconductor has zero resistance for direct current (dc) signals, it presents

a nonzero impedance for an applied alternating current (ac) signal. In addition to a

geometric inductance, a superconductor has a non-negligible kinetic inductance. An

electric field applied near the surface of a superconducting wire with cross section A and

length ℓ will cause the Cooper pairs to accelerate, storing a kinetic energy equal to [56]:

KE =
1

2
(2mv2)(nsℓA) =

1

2
LKI

2, (2.2)
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1 3 2

Figure 2.1: Cartoon of an S-I-S Josephson junction. Junction is made of two super-
conducting electrodes (regions 1 and 2) separated by a thin insulating barrier (region
3). The Cooper pairs in each electrode can be described by a wave function Ψk, which
has an order parameter θk, known as the phase of the condensate. The red and green
traces represent the amplitude of the wave functions in the first and second electrodes,
respectively.

where the current I = 2evns, m and e is the mass and charge, respectively, of an elec-

tron, and ns is the uniform Cooper-pair density, giving the following form to the kinetic

inductance LK :

LK =
mℓ

2nse2A
. (2.3)

Qualitatively, the inertia of the Cooper-pairs resist a quickly changing electric field,

creating a phase lag in the charge carriers due to the finite time it takes for the Cooper-

pairs to change directions. The total series inductance of the wire is just LT = LG +LK ,

where LG is the geometric inductance of the wire. Taking LK into account will be

important when designing our integrated circuits.
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2.2 Josephson Effect

The workhorse of the superconducting electronics community is the Josephson junc-

tion: two superconductors allowed to interact through a weak link, where the “weak

link” can be a thin insulating barrier, a normal metal, or a narrow superconducting

constriction–respectively referred to as an S-I-S, S-N-S, or S-C-S junction. In 1962,

Brian Josephson predicted that a supercurrent IS will tunnel through this weak link [57],

as described by the “dc Josephson Effect”:

IS = I0 sin(δ). (2.4)

Illustrated in Figure 2.1, δ = θ1 − θ2 is the phase difference of the two wave functions

that the describe the electrode1, where I0 is the maximum supercurrent that the junction

can support. I0, also referred to as the junction “critical current,” depends on the

superconducting gap of the electrodes, the applied magnetic field, and the geometry of

the junction.

Additionally, the “ac Josephson Effect” describes a voltage that develops across the

junction proportional to phase difference’s rate of change:

VJ =
Φ0

2π

dδ

dt
, (2.5)

where Φ0 = h/2e = 2.0678 × 10−15 Tm2 is the magnetic flux quantum, h is the Planck

constant, and e is the absolute charge of a single electron. If you apply a dc voltage

1I’ve ignored the effect of the magnetic field seen by the junction. This is an appropriate assumption,
given the small footprint of the junctions made in this thesis. For more details, refer to 6.2.3 in [56].
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Figure 2.2: Resistively and capacitively shunted junction (RCSJ) model of the Josephson
junction. CJ is the self capacitance of the junction, R is the shunt resistance across
the junction, and VN represents the voltage noise generated by the resistor. The cross
represents the junction behavior captured by Equation 2.4. The cross will schematically
represent the RCJS junction for the remainder of the thesis.

V0 across the junction, it follows that the junction behaves like an ac current source

with frequency fJ = V0/Φ0, approximately 484 MHz per µV. Additionally, the junction

behaves as a nonlinear inductance, described by:

LJ(δ) =
VJ

İS
=

Φ0/2πδ̇

I0cos(δ)δ̇
=

LJ(0)

cos(δ)
, (2.6)

where ẋ = dx/dt, and LJ(0) = Φ0/(2πI0).

2.2.1 RCSJ Model

One can intuitively approach the dynamics of the Josephson junction using the Re-

sistively and Capacitively Shunted Junction (RCSJ) model [58, 59, 60, 61], schematically

shown in Figure 2.2. The RCJS model captures the behavior of the physical junction in
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both the voltage and supercurrent state. CJ is the self capacitance of the junction coming

from the overlapping electrodes, 50 fF/µm2 for our process, R is the resistance shunting

the junction, giving quasiparticles a dissipation channel in the junction’s voltage state2.

For voltages greater than Vg = 2∆/e, where ∆ is the superconducting gap, the applied

voltage breaks Cooper pairs, giving a tunneling resistance [62]:

RN =
πVg

4I0
tanh(∆/2kbT ), (2.7)

where kb is Boltzmann’s constant. For most instances in this thesis, a shunt resistor is

explicitly formed by a normal metal thin film during device fabrication. Finally, VN is

the voltage noise generated by both quantum and thermal fluctuations present in the

shunt resistor.

The current Ib flowing through the RCJS junction is:

Ib = I0sin(δ) +
1

R
(
Φ0

2π
δ̇ − VN) + C

Φ0

2π
δ̈, (2.8)

which can be arranged to form the equation of motion for δ:

δ̈ = − 1

M

dU(δ)

dt
− δη0 + η0ṼN , (2.9)

where Equation 2.8 recast as a fictitious particle with momentum p = Mδ̇ and mass

M = C(Φ0

2π
)2 moving in potential energy landscape:

2For the purpose of this thesis, we’ll assume a linear shunt resistance. In reality, the quasiparticle
conductance is strongly voltage-dependent.
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U(δ) = −Φ0I0
2π

(cos(δ) +
Ib
I0
δ), (2.10)

with a drag force coefficient η0 = 1
RC

. ṼN = VN(2π/Φ0) represents the noise due to the

normal current flowing through R in the voltage state of the junction.

It is qualitatively helpful to illustrate the junction potential for different current biases,

as shown in Figure 2.3. U(δ) looks like a corrugated wash board, where the tilt of the

potential depends linearly on the bias current of the junction ib = Ib/I0. One can imagine

a fictitious phase particle with mass M transversing the potential landscape. At ib = 0,

the state of the junction is confined to a local minima of the potential, periodically spaced

by 2π. As the applied current approaches I0, the barrier confining the fictitious particle

becomes shallow until it vanishes at ib = 1. For ib > 0, the phase particle freely rolls

down the slope, acquiring a velocity δ̇, which appears as a voltage across the junction,

per Equation 2.5.

In the absence of damping η0, the kinetic energy of the phase particle will keep the

junction in the voltage state until the ib = 0, resulting in hysteretic behavior, as plotted

in Figure 2.4(a). Hysteresis can be avoided by introducing damping, which forces the

moving phase particle to dissipate its kinetic energy, such that the state retraps for an

ib > 0. The overdamped junction will retrap at ib = 1.

2.2.2 Dynamics of the Current Biased Josephson Junction

To further understand the behavior of Josephson junction, it is helpful to numeri-

cally examine the dynamics of the overdamped junction. First, we’ll use the following

definitions to recast the equations of motion into their dimensionless forms:
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Figure 2.3: RCJS potential energy Equation 2.10 for three different current biases
ib = Ib/I0.

θ ≡ (2πI0R/Φ0)t,

ṽ ≡ V

I0R
,

i ≡ I/I0,

φ ≡ Φ/Φ0,

βC ≡ 2πI0CR2/Φ0,

βL ≡ 2I0L/Φ0,

Γ ≡ 2πkT

I0Φ0
,

dA

dθ
≡ A′, (2.11)



29

Γ = 0

0.1

0.5

C
u

rr
e

n
t 

Voltage

0

I
0

2Δ/e0

I

II
III

IV

Voltage (I
0
R)

C
u

rr
e

n
t 

(I
0
) 

(a) (b)

0 1 2 3
0

1

2

Figure 2.4: (a) The hysteretic current-voltage characteristic of an underdamped Joseph-
son junction. On branch I the junction is in the superconducting state until the applied
current exceeds I0, at which a voltage 2∆/e develops (branch II). As the current contin-
ues to increase (branch III) the excess current flows through the parallel resistor R. As
the current is reduced below I0 (branch IV) a voltage remains across the junction. (b)
Current-voltage characteristic of an overdamped junction for three different normalized
temperatures Γ.

where θ, ṽ, i, φ, βC , βL and Γ are the dimensionless time, voltage, current, flux, capac-

itance, inductance, temperature, and time derivative respectively. In the dimensionless

form, Equation 2.8 becomes:

ib = sin(δ) + δ′ − ṽN + βCδ
′′, (2.12)

which is a second order differential equation that can easily be solved using the numerical

techniques described in Appendix B.1.

Figure 2.5 shows the time evolution of δ and junction voltage (ṽ = δ′) for two different

current biases greater than I0. Notice how δ jumps by 2π with a Josephson frequency
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Figure 2.5: Noiseless junction dynamics with βC = 0.5. Junction is biased just above I0.
The solid and dashed lines represent two different bias currents, with the bias current of
the dashed line is greater than that of the sold line. The phase difference δ (a) and the
voltage across the junction (b) are plotted as a function of time.

fJ that increases with ib, resulting in voltage spikes that occur as the fictitious phase

particle traverses the steep regions of U(δ) pictured in Figure 2.3. As the tilt in U(δ)

becomes steeper, the voltage spikes increase in frequency, resulting in a larger average

voltage 〈ṽ〉:

〈ṽ〉 = 2πf̃J , (2.13)

where f̃J is the dimensionless Josephson frequency. We are interested in the average

voltage when calculating the IV characteristics of a device, as the bandwidth of our
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Figure 2.6: Junction dynamics with βC = 0.5, Γ = 0.1, and Ib slightly below I0. The
phase difference δ (a) and the voltage across the junction (b) are plotted as a function
of time.

experimental setup is much lower than the typical fJ , which is on the order of tens of

GHz.

In the presence of classical thermal noise, defined by the dimensionless voltage spectral

density S̃N
V :

S̃N
V = 4Γ, (2.14)

a voltage can develop across the junction for Ib < I0. In the context of the washboard

potential, the fictitious phase particle is thermally activated over the potential barrier
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into the adjacent minima. Classical noise is included in junction numerics according to

Appendix B.2. The dynamics of a junction in the presence of noise is plotted in Figure 2.6,

where Ib is slightly less than I0, allowing the thermal noise to randomly advance δ by

2π. This random walk down the tilted washboard potential averages out to a nonzero

voltage across the junction, as shown by the IV curves of Figure 2.4(b).

2.3 Flux Quantization

Flux quantization in a superconducting loop is a direct consequence of the single

valued nature of the phase of the condensate θ(~r) [56], resulting in:

∮

∇θ(~r) · d~l = 2πs for s ∈ N. (2.15)

The current density ~j in a superconductor is:

~j = qΨ∗(~r, t)~vΨ(~r, t) = nq
(

~∇θ(~r)− q ~A
)

/m, (2.16)

where ~v =
(

−i~∇− q ~A
)

/m is the velocity of a particle with charge q in the magnetic

vector potential ~A, and Ψ(~r) =
√
n exp(iθ(~r)). From the Meissner effect, there exists a

contour within the superconductor [Figure 2.7(a)], such that ~j = 0. Taken with Equa-

tion 2.15 and Stoke’s theorem, a path integral of Equation 2.16 gives:

∮

~j · d~l = nq

m
(~2πs− qΦT ) = 0, (2.17)



33

rr

(a) (b) I

I

A

B

θ
1A

θ
1B

θ
2A

θ
2B

Figure 2.7: (a)Superconducting loop with the path of integration ~c. (b) Superconducting
loop interrupted by two Josephson junctions.

resulting in the flux quantization condition, with ΦT being the total magnetic flux pen-

etrating the loop:

ΦT = sΦ0, s ∈ N. (2.18)

An externally applied flux Φx will induce a current in the loop to create an equal and

opposite flux, maintaining flux quantization. Once Φx > Φ0/2, it becomes energetically

favorable for one Φ0 to slip into the loop, reversing the direction of the induced current.
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2.4 dc SQUID

2.4.1 Fluxoid Quantization

The dc SQUID [Figure 2.7(b)] is a superconducting loop interrupted by two Josephson

junctions. The presence of the junctions modifies Equation 2.15:

∮

∇θ(~r) · d~l = (θ2A − θ1A) + (θ1B − θ2B) = δ1 − δ2, (2.19)

where δi = θiB − θiA. It follows that the total magnetic flux through a dc SQUID is:

ΦT =
Φ0

2π
(δ1 − δ2). (2.20)

Assuming that both junctions have a critical current I0, we can write the total current

I flowing through the SQUID as:

I = I0 [sin(δ1) + sin(δ2)]

= I0

[

sin

(

δ2 +
2πΦT

Φ0

)

+ sin(δ2)

]

= 2I0 cos

(

πΦT

Φ0

)

sin

(

δ2 +
πΦT

Φ0

)

, (2.21)

where we’ve used Equations 2.4 and 2.20. It follows that the dc SQUID behaves like a

single junction with a flux modulated critical current IM :
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IM(ΦT ) =

∣

∣

∣

∣

2I0 cos

(

πΦT

Φ0

)∣

∣

∣

∣

. (2.22)

In general, the total magnetic flux in the SQUID loop has contributions from an ex-

ternally applied flux Φx and the circulating current J coupled through the self-inductance

of the SQUID loop L:

ΦT = Φx + JL =
Φ0

2π
(δ1 − δ2). (2.23)

2.4.2 Transfer Function

If we ignore the self inductance3, the dynamics of a dc SQUID behave like a single

Josephson junction with a critical current given by 2.22, where ΦT = Φx. In the over-

damped case, where βC → 0, the equation of motion of the SQUID (described by 2.12)

becomes:

2δ′ = ib − iM(φx) sin(δ). (2.24)

δ′ is rescaled by two since the total shunt resistance is now R/2 due to the parallel

junctions. We integrate δ from 0 to 2π to find the period T = 1/f̃J which gives us the

average voltage across the junction according to Equation 2.13.

3We ignore L for an exact solution of the phase dynamics. The SQUID self inductance modifies ΦT

according to 2.23, preventing IM from modulating to 0. We fully account for L in the next chapter.
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Figure 2.8: Voltage across the dc SQUID as a function of flux, for Ib = 1.9 I0.

∫ 2π

0

2dδ(ib − iM(φx)sin(δ))
−1 = 4π/

√

i2b − iM(φx)2 = T = 1/f̃J = 2π/〈ṽ〉. (2.25)

It finally follows that the average voltage across the SQUID is:

〈ṽ〉 = 1

2

√

i2b − iM(φx)2

=
1

2

√

i2b − |2 cos (πφx)|2. (2.26)

The voltage across the dc SQUID is plotted as a function of quasistatic flux for Ib = 1.9 I0

in Figure 2.8.

All amplifiers have a transfer function that map the input signal to its output. For a

transistor-based amplifier, a small change in the voltage across the gate maps to a large

change in the source-drain current. In the case of a dc SQUID, an externally applied
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Figure 2.9: (a) Ketchen-Jaycox SQUID washer coupled to a planar multi-turn spiral
inductor. In the microstrip configuration, one side of the input coil is left open. (b)
The plot taken from [63] shows that as the operating frequency of a microstrip amplifier
increases the gain decreases.

magnetic flux maps to a voltage across the SQUID. By statically biasing the SQUID at

a steep point in the transfer function (Φx = 0.25Φ0 for 2.8), a small change in Φx results

in a large change in output voltage. For small signals, the slope of the transfer function

appears linear.

2.5 SQUID Amplifiers

An amplifier based on the dc SQUID4 must transform the signal to be amplified

into a magnetic flux that threads the superconducting loop. The Ketchen-Jaycox [65]

geometry, illustrated in Figure 2.9(a), uses a superconducting square washer with a slit

as the inductive loop, where two resistively shunted via style Josephson junctions sit at

the mouth of the slit. The input coil is a planar multi-turn spiral inductor separated from

the SQUID washer by a thin dielectric layer. The input voltage signal is transformed into

4See John Clarke’s review article [64].
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a current by the impedance of the input coil, and then into a flux through the washer

from the inductive coupling. Conventionally, one side of the input coil is grounded.

For low-frequency operation (less than 1 MHz), the amplifier is operated in a flux

locked loop, where the feedback flux pins the bias point of the SQUID to the maximum of

the V Φ curve. The feedback flux counters the flux generated by the signal, maintaining

the total flux threading the SQUID loop. The feedback flux is then converted to a

voltage, which is the recorded output signal. Ignoring low-frequency 1/f noise, amplifiers

operated in this manner typically have noise on the order of 1 µΦ0/
√
Hz. For intermediate

frequencies (up to 200 MHz), the SQUID is operated open-loop with a tuned input-circuit

to minimize the noise-temperature of the device [66].

At higher operating frequencies, the parasitic capacitance between the input coil and

the SQUID washer cause a roll-off in gain. Mück et al. [67] avoided this rolloff by keeping

one side of the input coil open, thus operating the input as a λ/2 microstrip resonator,

where the SQUID washer acts as the groundplane for the coil. The noise temperature

of a microstrip SQUID amplifier has been measured to be 47 ± 10 mK and 48 ± 5 mK

at frequencies of 519 MHz and 612 MHz, respectively, more than an order of magnitude

lower than the best semiconductor amplifiers available and within a factor of 2 of the

quantum limit [68, 69]. However, efforts to extend the operating frequencies of these

amplifiers into the gigahertz range are hampered by the fact that a reduction of the

length of the input resonator results in a reduced mutual inductance between the input

coil and the SQUID [63], as shown in Figure 2.9(b). It is possible to compensate for the

reduced coupling by increasing the slope of the transfer function, but this strategy has

diminishing returns [70, 71]. Alternative approaches have included the integration of a

high-gain SQUID gradiometer into a coplanar waveguide resonator at a current antinode

[72, 73, 74].
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Chapter 3

SLUG Amplifier Theory

The numerical study in this chapter was motivated by the development of a new

device configuration that enables the efficient coupling of a GHz-frequency signal to a

low-inductance, high gain SQUID that should achieve noise performance approaching the

standard quantum limit. The gain element is more properly termed a superconducting

low-inductance undulatory galvanometer (SLUG), as the signal in not coupled to the

device inductively, but rather injected directly into the device loop as a current [75].

The low-inductance design is straightforward to model at microwave frequencies, and the

SLUG is readily integrated with an on chip matching network in such a way that the

modes of the SLUG element and the matching network remain clearly resolved, greatly

simplifying analysis of the circuit. In this chapter we present a comprehensive theoretical

study of the gain and noise performance of the SLUG microwave amplifier. Our goals are

to clearly spell out the design tradeoffs, to outline a clear path to device optimization,

and to identify the fundamental limits to performance.

As we shall see, the scattering parameters of the SLUG are very similar to those of

the more familiar dc SQUID, apart from a trivial shift in flux bias that arises from the
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asymmetric division of bias current between the two arms of the SLUG. However, while it

is straightforward to fabricate a low-inductance (∼ 10 pH) SLUG and to embed the device

in a 50 Ω environment, it is challenging to engineer a clean, purely inductive coupling to

a conventional dc SQUID at microwave frequencies [see discussion in Section 2.5]. It is

for this reason we focus our discussion of microwave amplifiers on the SLUG geometry.

This chapter is organized as follows. In Sections 3.1 and 3.2, we introduce the circuit

models of the symmetrically coupled dc SQUID and the symmetric SLUG, respectively.

In Section 3.3, we calculate the dc characteristics of the devices. In Section 3.4, we

evaluate the SLUG scattering parameters and examine the maximum achievable gain

over the range of device parameters. Sections 3.5 and 3.6 present an analysis of the noise

properties in the thermal and quantum regimes, respectively. In Section 3.7, we describe

the design and performance of practical SLUG amplifiers for GHz frequency operation,

and in Section 3.8 we discuss amplifier dynamic range. In Section 3.9, we describe the

effect of the finite admittance of the input circuit on device characteristics, gain, and

noise. In Section 3.10, we briefly examine the reverse transfer function of the bare SLUG

amplifier, and in Section 3.11 we consider the performance of the SLUG with a lumped

element LC input matching network. Finally, in Section 3.12 we discuss hot-electron

effects. Most of the work in this chapter was described by G. Ribeill et al. [76].

3.1 dc SQUID Equations of Motion

To draw parallels with earlier numerical studies [77, 78, 79, 80, 81, 82], we consider

the familiar symmetrically coupled dc SQUID, schematically shown in Figure 3.1. The dc

SQUID consists of two overdamped Josephson junctions embedded in a superconducting

loop with inductance L. The junctions (with phase differences δ1,2) have identical critical
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Figure 3.1: Symmetrically coupled dc SQUID with total loop inductance L and two
identical resistively and capacitively shunted junctions, biased by Ib. The input signal
IΦ is symmetrically coupled to the SQUID loop with mutual inductance M .

currents I0, shunt resistances R and self-capacitances C. The superconducting loop is

formed from two equal branches, each with inductance L/2; for the conventional loop

geometry we can neglect the mutual inductance between the branches. A dc current

bias Ib and bias flux Φb establish a quasistatic operating point. The input signal IΦ =

IΦ,dc + IΦ,rf is symmetrically coupled to the SQUID loop with total mutual inductance

M , where Φb = MIΦ,dc and IΦ,rf is the rf-signal to be amplified. Using Equation 2.8, the

currents through the junctions are given by:

I1 = I0 sin(δ1) +
1

R
(
Φ0

2π
δ̇1 − VN,1) + C

Φ0

2π
δ̈1,

I2 = I0 sin(δ2) +
1

R
(
Φ0

2π
δ̇2 − VN,2) + C

Φ0

2π
δ̈2. (3.1)

The output voltage Vout is given by:
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Vout =
Φ0

2π
δ̇1 +

L

2
İ1

=
Φ0

2π
δ̇2 +

L

2
İ2. (3.2)

Employing Equation 2.20, the total flux through the SQUID loop ΦT is given by:

ΦT = I1
L

2
+ IΦM − I2

L

2

= LJ + IΦM =
Φ0

2π
(δ2 − δ1), (3.3)

where the J is the circulating current in the SQUID loop1:

J =
I1 − I2

2
. (3.4)

Using the dimensionless variables introduced by Equations 2.11 and the node rela-

tionship Ib = I1 + I2, the equations of motion become:

βCδ
′′
1 =

ib
2
− iφ,rf +

δ2 − δ1 − 2πφb

πβL
− sin(δ1)− δ′1 + ṽN,1,

βCδ
′′
2 =

ib
2
+ iφ,rf −

δ2 − δ1 − 2πφb

πβL
− sin(δ2)− δ′2 + ṽN,2. (3.5)

The quasistatic output voltage and the circulating current are given by:

1We define J > 0 in the counterclockwise direction, hence the sign difference compared with Equa-
tion 2.20.
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ṽout =
1

2
(δ′2 + δ′1) , (3.6)

j =
1

πβL
(δ2 − δ1 − 2πφb) . (3.7)

3.2 SLUG Equations of Motion

In the SLUG geometry of Figure 3.2, the device loop is formed from two superconduct-

ing traces separated by a thin dielectric layer, and the input signal is injected directly into

one of the traces. In the case where the SLUG is integrated into a microstrip transmis-

sion line, the device is realized in three metallization steps (corresponding to the circuit

groundplane and the two inductive arms of the SLUG), with two dielectric thin films

of thickness t separating the metal layers. The SLUG loop inductance L is determined

from the self and mutual inductances of the base electrode (BE) and top electrode (TE)

traces: L ≈ LTE + LBE − 2LM , where LTE (LBE) is the inductance of the trace formed

in the TE (BE) layer and LM is the mutual inductance between the two traces. For a

SLUG element of length ℓ, trace width w, and with the BE (TE) trace separated from

the groundplane by distance t (2t), we find the geometric inductance LBE ≈ µ0tℓ/w,

with LTE ≈ 2LBE and LM ≈ LBE . Therefore, we have L ≈ LBE , and the mutual cou-

pling M of the signal current IΦ to the device loop is also L. Ib biases the device in the

finite-voltage state and IΦ,dc establishes a quasistatic flux bias Φb = LIΦ,dc. We refer to

this configuration as the symmetric SLUG, where similar device geometries were studied

in [75, 83].

The total flux through the SLUG loop is:
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Figure 3.2: Symmetric dc SLUG with total loop inductance L and two identical resis-
tively and capacitively shunted junctions, biased by Ib and Iφ,dc. The input signal IΦ is
coupled to the SLUG loop with mutual inductance M. (a) SLUG layer stackup. GND
is the groundplane, BE is the bottom electrode, TE is the top electrode, and JJ are the
Josephson junctions. (b) Layout of the SLUG element as seen from above (not to scale).
(c) Circuit schematic of the SLUG.

ΦT = (I1L− I3L) + (I32L− I1L)

= (I1 + IΦ)L =
Φ0

2π
(δ2 − δ1) , (3.8)

where I3 = I1 + IΦ. The dimensionless equations of motion for the junction phases are:
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βCδ
′′
1 =

δ2 − δ1 − 2πφb

πβL
− iφ,rf − sin(δ1)− δ′1 + ṽN,1,

βCδ
′′
2 = −δ2 − δ1 − 2πφb

πβL

+ ib + iφ,rf − sin(δ2)− δ′2 + ṽN,2. (3.9)

The output voltage and circulating current are given by:

ṽout = δ′2, (3.10)

j =
δ2 − δ1 − 2πφb

πβL
− iφ,rf

2
. (3.11)

To operate the SQUID or the SLUG as an amplifier, one chooses Ib and Φb to establish

a quasistatic operating point where the transfer function VΦ ≡ ∂V/∂Φ is large. In both

cases, the device acts as a transimpedance element: the input signal is coupled to the

device as a current and the output signal is coupled from the device as a voltage.

3.3 DC Characteristics

Equations 3.5 and 3.9 were numerically integrated according to Appendix B.1, where

noise terms are ignored for now. In Figures 3.3(a) and 3.3(b), we show the current-

voltage (I-V) characteristics of the symmetrically coupled dc SQUID and the symmetric

SLUG with βL = 1 and βC = 0.8; Figures 3.4(a) and 3.4(b) show the voltage-flux (V-Φ)

characteristics of the same devices.

We observe that the dc characteristics of the symmetric SLUG closely match those

of the symmetrically coupled SQUID, apart from a shift in flux bias point that arises
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Figure 3.3: I-V characteristics of the (a) symmetrically coupled dc SQUID and (b)
symmetric SLUG for different flux biases: Φb = 0.0 (black), 0.25 (red), 0.5 (blue).
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Figure 3.4: V-Φ characteristics of the (a) symmetrically coupled dc SQUID and (b)
symmetric SLUG for different current biases: 1.8 I0(black), 1.9 I0(blue), 2.0 I0(red).

from the asymmetric division of the SLUG bias current. Similarly, we have found that

most scattering parameters and noise properties of the SLUG and the SQUID are closely

matched, with the exceptions noted in the applicable sections below.

For the sake of simplicity, we focus on the following set of SLUG parameters for the

remainder of this chapter: βL = 1, βC = 1, L = 10 pH, and junction self capacitance

C = 50 fF, corresponding to a 1 µm2 junction with I0 = 100 µA, and a shunt resistance
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of R = 7.26 Ω. These parameters were used for the dc characteristics already plotted.

Several considerations lead us to this choice. First, inductances of order 10 pH are

realized in a reliable, controlled way in the SLUG geometry, and the compact nature

of the resulting device should be immune to parasitic reactances and is straightforward

to model at microwave frequencies. This requires a critical current density of J0 = 10

kA/cm2, within the reach of standard Nb-AlOx-Nb technology [84, 85]. For βL = 1,

the transfer function is proportional to the product of the shunt resistance and junction

critical current [81]. For a fixed βC , the transfer function goes as:

VΦ ∝ RI0 =

√

Φ0βCI0
2πC

=

√

Φ0βCJ0

2πC̃
, (3.12)

where C̃ = 50 fF/µm2 is the junction capacitance per unit area. The amplifier gain

increases with VΦ, so it follows that to maximize gain one must maximize J0.

A βL = 1 was chosen based on the numerical studies in [81], which found the optimal

noise performance2 of a dc SQUID to occur at βL = 1.

3.4 Scattering Parameters

In order to optimize the SLUG amplifier design, it is necessary to understand the

forward transfer function and the complex input and output impedances of the gain

element. With the help of the scattering parameters, we can design a matching network to

optimize the amplifier’s gain and noise performance. To extract these from our model, we

apply an oscillating current at either the input (Iφ,rf) or the output (Ib,rf), and measure the

voltage response across both the input and the output. We make sure that the amplitude

2Tesche et al. [81] minimized the energy resolution of a dc SQUID for a fixed temperature.
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Figure 3.5: Forward transimpedance VI for the SLUG at different current biases: 1.8
I0(black), 1.9 I0(blue), 2.0 I0(red).

of the excitation is small enough to not affect the measured scattering parameter. The

probe frequency fp for the figures in this section is 6 GHz, and we consider bias points

where the Josephson frequency fJ ≫ fp. The dimensionless form of the input voltage is

as follows:

ṽin = πβLi
′
φ,rf + (δ′2 − δ′1). (3.13)

We first consider the forward transimpedance (VI ≡ ∂Vout/∂Iφ,rf), plotted versus flux

in Figure 3.5. Once again, we consider a SLUG with βL = 1, βC = 1, L = 10 pH, and

junction self capacitance C = 50 fF, corresponding to a 1 µm2 junction with I0 = 100 µA,

and a shunt resistance of R = 7.26 Ω. As expected, flux biases near the supercurrent

branch see a larger transimpedance.
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Figure 3.6: Dimensionless Zin, where (a) is the dimensionless real component ρin and
(b) is the dimensionless imaginary part χin for the SLUG at different current biases: 1.8
I0(black), 1.9 I0(blue), 2.0 I0(red).

Next, we consider the input return loss. The SLUG input is an inductive short

to ground at low frequencies, and the complex input impedance Zin ≡ ∂Vin/∂Iφ,rf is

frequency dependent, taking on the following form:

Zin = Rin + iXin

= ρin
(ωL)2

R
+ iχinωL, (3.14)

where ρin and χin are frequency independent and plotted versus flux in Figures 3.6(a)

and (b), respectively.

Note that both ρin and χin get larger as the SLUG is biased closer to the supercur-

reimnt branch. Figures 3.7(a) and (b) plot the components of the SLUG’s real ρout and

imaginary χout output impedance, where
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Zout = Rout + iXout

= ρoutR + iχoutωL. (3.15)

Note that ρout and χout are asymmetric, arising from the asymmetric division of the

SLUG bias current. This asymmetry is not present in the SQUID.

As we will see in later sections, amplifier gain, bandwidth, operating frequency and

noise performance depend sensitively on Zin, VI and Zout. The numerically determined

scattering parameters allow one to extract the gain of the SLUG element embedded in

an arbitrary two port network [86], shown found in Figure 3.8, where for the time being

we ignore the embedded noise sources. The maximum available power gain Gm occurs

for a conjugately matched input impedance Zs = Z∗
in and Zo = Z∗

out. Gain is defined as

the ratio of power dissipated in Zo with and without the SLUG in the circuit:
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Figure 3.8: The dashed box contains the numerically determined complex input Zin and
output Zout impedances, while Zs and Zo are external source and output impedances, and
Vs is the input voltage source. Iin and Iout are the input and output currents, respectively.
Vo is a voltage source that depends on the Iin and the forward transimpedance VI . V n

i

and V n
o are noise sources.

PSLUG =
V 2
s |VI |2ρoutR

(4ρinρoutω2L2)2
, (3.16)

Pref =
V 2
s R

4ρinω2L2
, (3.17)

giving Gm the form:

Gm =
PSLUG

Pref
=

|VI |2
4ρinρoutω2L2

. (3.18)

In Figure 3.9(a), we plot Gm versus Φb for different current biases, evaluated at 6 GHz.

Over a broad range of bias parameters, gain in excess of 20 dB is readily achievable. While

Gm does degrade when the SLUG is operated at higher frequencies, as Figure 3.9(b)

illustrates, the gain element is still useful even at 10 GHz. It is important to note,

however, that a conjugate match to a 50 Ω source does not yield best amplifier noise
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Figure 3.9: Maximum gain evaluated (a) at 6 GHz for different current biases: 1.8
I0(black), 1.9 I0(blue), 2.0 I0(red), and (b) for Ib = 1.8 I0as a function of frequency and
Φb, where the false color is gain in dB.

performance, due to the mismatch between the real part of the SLUG input impedance

Rin and the optimal noise-matched source impedance, which can be significantly larger

than Rin. Amplifier optimization, therefore, involves a tradeoff between gain and noise

performance, as discussed in detail below.

The bandwidth of the SLUG amplifier will be determined by the coupling to the low-

impedance input port, as the device output port is reasonably well-matched to typical

transmission line impedances. To get a rough idea of amplifier bandwidth, we consider a

50 Ω source impedance and assume that conjugate matching at the device input is accom-

plished via a simple quarter-wave transmission line section with characteristic impedance

Z0 =
√
50 Ω× Rin; for simplicity, we neglect the imaginary part of the SLUG input

impedance. Assuming reflected power goes to zero, we get the following approximation

for the quality factor Q of the matching network [87]:
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Q ≈ π

8

√

50 Ω

Rin

=
π

8ωL

√

50 Ω× R

ρin
. (3.19)

The bandwidth of an amplifier designed at an operating frequency ω/2π is then ω/2πQ.

For an operating frequency of 6 GHz, we find that Rin is of the order 0.1 Ω. Therefore

we expect Q of the order 10, meaning amplifier bandwidths on the order of hundreds of

MHz. For a current bias Ib < 2 I0 and for a narrow range of fluxes corresponding to

bias points near the supercurrent branch, we find that it is possible to achieve extremely

high power gain [Figure 3.9]. However, the high gains achieved at these bias points are

due largely to vanishing Rin; an amplifier designed to operate in this regime would have

a rather small bandwidth. It is important to note that Equation 3.19 presents only a

rough guideline for the bandwidth rather than a fundamental limit. In particular, it is

possible to obtain a larger bandwidth with no degradation in gain by employing either

a tapered transmission line matching section or a multi-section input transformer with

stepped transmission line impedances [87].

3.5 Noise Properties in the Thermal Regime

In the previous section we ignored the Johnson noise of the shunt resistors, which gives

rise to a voltage noise at the device output and to a circulating current noise in the device

loop; moreover, these noises are partially correlated, since the circulating current noise

couples a flux noise to the loop, which in turn yields a voltage noise across the device. The

above calculated scattering parameters are unaffected by the noise magnitudes relevant to



54

this thesis, especially when limiting our analysis to biases where the Josephson frequency

fJ > 5 GHz. The noise is numerically introduced according to the method described in

Section B.2, while the noise spectra were calculated according to Section B.4. Following

Tesche and Clarke [79] and Hilbert and Clarke [66], we introduce the dimensionless noise

parameters γV , γJ and γV J , such that the voltage SV , circulating current SJ and the

correlated SV J noise spectral densities are given by:

SV = 2γV kBTR, (3.20)

SJ = 2γJkBT/R, (3.21)

SV J = 2γV JkBT, (3.22)

where T is the electron temperature of the shunt resistors. The noises γ do depend on

on the noise parameter Γ, due to the possibility of saturation and smearing of the device

characteristics at elevated temperature. In Figure 3.10, we plot the dimensionless noises

over a range of bias parameters for the same realization of the SLUG as the previous

section and Γ = 4×10−5, which corresponds to an electron temperature of 100 mK when

considering a SLUG with βL = 1, βC = 1, L = 10 pH, and junction self capacitance

C = 50 fF, corresponding to a 1 µm2 junction with I0 = 100 µA, and a shunt resistance

of R = 7.26 Ω. We note that at high bias current, Ib ≫ I0, γV,J approach the expected

Johnson noise limit of 1 for the two shunt resistors in parallel.

The device noise temperature Tn is evaluated from the circuit shown in Figure 3.8,

where we calculate the total open circuit spectral density (Zo → ∞). It follows from

Equation 3.13 that the spectral density of V n
i is just SJω

2L23. We assume a noiseless

3The input voltage can be rewritten as ṽin = πβLj
′+3πβLiφ,rf/2, where j is the circulating circuit in

the SLUG loop. iφ,rf is a noiseless current source, meaning the input voltage has a spectral density that



55

−0.4 −0.2 0 0.2 0.4

10-1

100

101

102

100

101

102

100

101

102

Ф
b
(Ф

0
)

|γ
V
J
|

|γ
J
|

|γ
V
|

(a)

(b)

(c)

Figure 3.10: Dimensionless SLUG noises (a) γV , (b) γJ , and (c) γV J versus flux for
Γ = 4× 10−5 and various current biases: 1.8 I0(black), 1.9 I0(blue), 2.0 I0(red).

source impedance ZS = RS + jXS and equate the total noise of the amplifier to the

noise contribution from a source resistance RS with a single side power spectral density

depends only on the time derivative of the circulating current noise, SJ . Since the Fourier transform of
a time derivative goes as Ft[ḟ(t)](ω) = iωFt[f(t)](ω), it follows that V

n
i has a spectral density equal to

SJω
2L2.
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Figure 3.11: (a) Optimal real Ropt
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S source impedance for the
minimum noise temperature at T = 100 mK. Plotted for different current biases: 1.8
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of 4kBTNRS, where Tn is the effective temperature of the source resistor. We refer all

noises to the device output. We find:

4kBTnRS
|VI |2

R2
t +X2

t

= SV + SJ
ω2|VI |2L2

R2
t +X2

t

+ 2SV J
ω|VI |LXt

R2
t +X2

t

= 2γV kBTR +
2γJkBT

R

ω2|VI |2L2

R2
t +X2

t

+ 4γV JkBT
ω|VI |LXt

R2
t +X2

t

. (3.23)

Here, Rt = RS + Rin (Xt = XS + Xin) is the sum of the real (imaginary) parts of the

source impedance and the device input impedance. The noise temperature is thus given

by:

Tn =

[

γV
2

(R2
t +X2

t )R

|VI |2RS
+

γJ
2

ω2L2

RRS
+ γV J

ωLXt

|VI |RS

]

T. (3.24)
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We use the condition ∂Tn/∂XS = 0 to solve for the imaginary part of the optimal source

impedance. We find:

Xopt
S = −γV J

γV

ω|VI |L
R

−Xin. (3.25)

Similarly, the condition ∂Tn/∂RS = 0 yields the real part of the optimal source

impedance. We have:

Ropt
S =

[

1 +
1

γ2
V ρ

2
in

( |VI |
Lω

)2

(γV γJ − γ2
V J)

]1/2

Rin. (3.26)

For the bias points where VI is highest, we have the following approximate expression

for Ropt
S :

Ropt
S ≈ 1

γV ρin

|VI |
Lω

(

γV γJ − γ2
V J

)1/2
Rin

=
ω|VI |L
γVR

(

γV γJ − γ2
V J

)1/2
. (3.27)

In Figures 3.11(a) and (b), we plot Ropt
S /Rin and Xopt

S /Xin versus flux for various current

biases. For typical device parameters, we have Ropt
S ≫ Rin. For this reason, it is not

possible to achieve a simultaneous power match and noise match. It is worthwhile to note,

however, that the ratio Ropt
S /Rin scales with frequency as ω−1, facilitating simultaneous

attainment of high gain and good noise performance at higher operating frequencies.

When the signal is coupled to the device via a source with optimal impedance Zopt
S =

Ropt
S + jXopt

S , the amplifier noise temperature becomes:
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T opt
n =

ωL

|VI |
(

γV γJ − γ2
V J

)1/2
T. (3.28)

In Figure 3.12, we show the optimal noise temperature T opt
n for a SLUG amplifier over

a range of bias points at an operating frequency ω/2π = 6 GHz. Note that every point

in these plots corresponds to a different realization of the input matching network; in

Section 3.9, we will examine the bias and frequency-dependent noise temperature of

SLUG amplifiers operated with a fixed input network.
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3.6 Noise Properties in the Quantum Regime

At sufficiently low temperature, the zero-point fluctuations of the resistive shunts are

expected to make the dominant noise contribution. The full expression for the spectral

density of voltage noise produced by the resistors in written as 2hfR coth(hf/2kBT ). We

have calculated the added noise of the symmetric SLUG in the zero-temperature limit,

where the voltage spectral density of the shunt resistors becomes 2hfR. We generate a

single-sided quantum spectral density as described by Section B.3. Using the quantum

noise as a driving term in the SLUG equations of motion 3.9, we evaluate the voltage

power spectral density SV (f) at the device output, the circulating current spectral density

SJ(f), and the cross spectral density SV J(f); in Figure 3.13, we plot these noises versus

flux for various bias currents. Once again, the device noise temperature Tn can be

evaluated from the circuit of Figure 3.8. We assume a zero-temperature source impedance

ZS = RS+jXS and equate the total noise of the amplifier to the noise contribution from a

source resistance RS at a finite effective temperature Tn. The amplifier noise temperature

is obtained from the relation:

2hfRS coth

(

hf

2kBTn

) |VI |2
R2

t +X2
t

= SV + SJ
ω2|VI |2L2

R2
t +X2

t

+ 2SV J
ω|VI |LXt

R2
t +X2

t

+ 2hfRS
|VI |2

R2
t +X2

t

.

(3.29)

Alternatively, we can express the noise contribution of the device in terms of an added

number of noise photons n, where n and Tn are related as follows:
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Figure 3.13: Quantum noises (a) SV , (b) SJ , and (c) SV J versus flux for various current
biases: 1.8 I0(black), 1.9 I0(blue), 2.0 I0(red).

coth

(

hf

2kBTn

)

= 2n+ 1, (3.30)

so that:



61

−0.4 −0.2 0 0.2 0.4 −0.4 −0.2 0 0.2 0.4

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

100

101

102

103

(b)(a)

Ф
b
(Ф

0
) Ф

b
(Ф

0
)
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n =
1

2hfRS

[

Sv

2

R2
t +X2

t

|VI |2
+

SJ

2
ω2L2 + SV J

ωL

|VI |
Xt

]

. (3.31)

The optimal source impedance Zopt
s = Ropt

S + jXopt
S is obtained from the relations

∂n/∂XS = 0 and ∂n/∂RS = 0. The imaginary part of the optimal source impedance is

given as follows:

Xopt
S = −SV J

SV

ω|VI |L−Xi. (3.32)

Similarly, the real part of the optimal source impedance is written:

Ropt
S =

[

1 +

( |VI |R
ρinωLSV

)2
(

SV SJ − S2
V J

)

]1/2

Rin. (3.33)
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Figure 3.15: Minimum number of added noise quanta in the quantum regime nopt versus
flux operated at 6 GHz for different current biases: 1.8 I0(black), 1.9 I0(blue), 2.0 I0(red).

In the limit VI ≫ ω, we find:

Ropt
S ≈ ω|VI|L

SV

(

SV SJ − S2
V J

)1/2
. (3.34)

In Figures 3.14(a) and (b), we plot Ropt
S /Rin and Xopt

S /Xin in the quantum regime

versus flux for a range of current biases. For the optimally matched source, the added

number of noise quanta is given by:

nopt =
L

2~|VI |
(

SV SJ − S2
V J

)1/2
. (3.35)

In Figure 3.15, we plot nopt versus flux, for various current biases. We see that for an

appropriately noise-matched source, the SLUG approaches a noise level that is close to



63

the standard quantum limit nSQL = 1/2, the minimum achievable added noise for a

phase-insensitive amplifier [44].

3.7 Amplifier Design

The above analysis demonstrates that the SLUG is an attractive gain element for

the realization of a low-noise microwave amplifier. We now consider concrete external

networks used to embed the device in a 50 Ω environment. The tasks are to maximize

power transfer to and from the device and to match the 50 Ω source to the optimal

noise impedance at the desired operating frequency. For example, to maximize gain, we

design a conjugate matching network to transform the 50 Ω source to Rin − jXin. On

the other hand, optimal noise performance is achieved for an input matching network

that transforms the 50 Ω generator to the complex optimal source impedance Zopt
S =

Ropt
S + jXopt

S . Since Ropt
S ≫ Rin for typical parameters, it is generally not possible to

achieve a simultaneous power match and noise match. However, it is possible to find a

compromise where there is reasonable gain and good noise performance over a relatively

broad bias range. Figure 3.16(a) shows a schematic diagram of a SLUG-based microwave

amplifier with transmission line matching sections at the input and output. To calculate

amplifier gain and noise performance, we treat the SLUG as a “black box” with scattering

parameters derived from the calculations above [Figure 3.16(b)].

As an example, we show in Figure 3.17 the frequency dependent gain, operating

frequency, instantaneous bandwidth, and added noise quanta n for SLUG amplifiers op-

erated with different single-section transmission line input couplers with characteristic

impedance in the range from 1 − 3 Ω. Here, we have used the full expression of Equa-

tion 3.31 to evaluate the frequency dependent added noise quanta of the amplifier. The
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Figure 3.16: (a) Schematic of SLUG microwave amplifier. (b) Black box circuit for
amplifier analysis

length of the input coupler provides a bare quarter-wave resonance at 9 GHz; inductive

loading of the SLUG pulls the operating frequency to lower frequencies. To evaluate the

source impedance ZS = RS+jXS in Equation 3.31, we need to evaluate the impedance of

the input coupler loaded by the generator resistance RG = 50 Ω. The general form for the

input impedance of a lossless transmission line with arbitrary load ZL and characteristic

impedance Z0 is given by [87]:

Ztran = Z0

(

ZL + jZ0 tan(βℓ)

Z0 + jZL tan(βℓ)

)

, (3.36)

where β = 2π/λ = 2πf/vph is the wave number, vph is the phase velocity, and ℓ is the

physical length of the transmission line. For a quarter-wave resonance fλ/4, the length of

the matching section is ℓ = vph/4fλ/4, and the source impedance becomes:
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ZS = Z0





RG + jZ0 tan
(

πf
2fλ/4

)

Z0 + jRG tan
(

πf
2fλ/4

)



 . (3.37)

To evaluate the frequency dependent gain, we must calculate the current Iin flowing

through Zin, giving us the following expression for the dissipated power at the output:

P SLUG
out =

∣

∣

∣

∣

IinVI

Zout +RG

∣

∣

∣

∣

2

RG. (3.38)

For the purposes of this simple example, we have ignored the quarter-wave output coupler

in Figure 3.16, directly connecting Zout to RG. To calculate the gain, we must refer P SLUG
out

to the output power with no SLUG in the circuit P ref
out :

P ref
out =

V 2
G

4RG

. (3.39)

The gain is then defined as G = P SLUG
out /P ref

out . To evaluate Iin, we make use of the

Telegrapher’s equations to arrive at following expression for the voltage along a lossless

transmission line [87]:

Vtr(z) = V +
o [exp(−jβz) + ΓL exp(jβz)]. (3.40)

By convention, the load sits at z = 0, and the transmission line input is at z = −ℓ. V +
o

is the voltage wave incident on the load, and ΓL is the reflection coefficient at the load:
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ΓL =
ZL − Z0

ZL + Z0
, (3.41)

where the voltage reflected off the load is V −
o = ΓLV

+
o . For our circuit, the voltage at

the input of the transmission line Vin is:

Vin =
VGZtran

RG + Ztran
= V +

o [exp(jβℓ) + ΓL exp(−jβℓ)], (3.42)

where we’ve made use of Equation 3.40 evaluated at z = −ℓ. Ztran and ΓL are evaluated

using Equations 3.36 and 3.41, where the load impedance ZL is just equal to the calcu-

lated input impedance of the SLUG Zin, and βℓ = πf
2fλ/4

. Finally, Equation 3.42 allows

us to calculate the voltage incident V +
o on the load as a function of frequency and, in

turn, the current flowing through Zin:

Iin =
V +
o

Zin
(1 + Γin)

=
Vin

Zin

(

1 + Γin

exp(jβℓ) + Γin exp(−jβℓ)

)

=
VGZtran

RG + Ztran

(

1

Zin

)





1 + Γin

exp
(

j πf
2fλ/4

)

+ Γin exp
(

j πf
2fλ/4

)



 , (3.43)

where Γin and Ztran are:
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Figure 3.17: (a)Gain, (b) operating frequency, (c) instantaneous bandwidth, and (d)
added noise quanta for a SLUG amplifier using a single transmission line section matching
network with a λ/4 resonance of 9 GHz, and a characteristic impedance indicated in the
figure. Gain and the added noise quanta are evaluated at the operating frequency – the
frequency where the quantum noise contribution of the SLUG is minimum. The plots
were evaluated for a range of Z0’s as indicated in the figure.
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Γin =
Zin − Z0

Zin + Z0
, (3.44)

Ztran = Z0





Zin + jZ0 tan
(

πf
2fλ/4

)

Z0 + jZin tan
(

πf
2fλ/4

)



 . (3.45)

We evaluate gain as a function of frequency with Equations 3.43, 3.38, 3.39. For the

data plotted in Figure 3.17, we’ve assumed a perfect match at the output, modifying

Equation 3.38:

P SLUG
out =

∣

∣

∣

∣

IinVI

Zout + Z∗
out

∣

∣

∣

∣

2

Rout. (3.46)

We remark that the transmission line impedances considered here are readily achieved

with thin-film microstrip technology: for example, a trace width of 10 µm and a dielectric

with relative permittivity ǫr = 4 and thickness 100 nm corresponds to a characteristic

impedance of 2 Ω.

In Figure 3.18, we consider the frequency-dependent gain and noise performance of

SLUG amplifiers operated at different flux biases for a fixed a quarter-wave transformer

with a characteristic impedance Z0 = 2 Ω and a λ/4 resonance of 9 GHz. Due to the non

vanishing cross spectral density SV J , the minimum added noise occurs at a frequency

that is somewhat lower than the frequency of maximum gain. For the simulated SLUG

parameters, we achieve noise within 50% of the standard quantum limit at a frequency

where amplifier gain is 15 dB and noise within a factor of two of the standard quantum

limit at a frequency where the gain is 18 dB.
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Figure 3.18: (a)Gain, and (b) added noise quanta versus frequency for a SLUG amplifier
using a single transmission line section matching network with a λ/4 resonance of 9 GHz,
and a characteristic impedance of Z0 = 2 Ω. Gain and noise are evaluated for three
different quasistatic flux biases, as indicated in the figure.
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Finally, we note that it is possible to increase the amplifier bandwidth significantly by

coupling the input signal to the device via a multisection transformer with stepped char-

acteristic impedances. As an example, we show in Figure 3.19 the frequency-dependent

gain and added noise for amplifiers operated with different three-section matching net-

works. Here, the length of each transmission line section was chosen to provide a bare

quarter-wave resonance at 5 GHz and the characteristic impedances were determined by

numerical minimization of the added noise contribution of the SLUG in the frequency

range from 4.5 to 5.5 GHz. The source impedance ZS and current flowing through the in-

put of the SLUG Iin were calculated in a similar method as the single section transformer

described above.

3.8 Dynamic Range

The strong nonlinearity of the SLUG leads to gain compression and harmonic gen-

eration when the device is driven with a large-amplitude signal. It is important to

verify that the SLUG dynamic range will be sufficient for the desired application. In

Figure 3.20(a), we plot the normalized SLUG gain4 versus signal power coupled to the

device input over a range of different bias parameters. These plots were generated by

solving the SLUG equations of motion [Equation 3.9] with a sinusoidal driving term of

varying amplitude5. Depending on the bias point, the 1 dB compression point occurs

somewhere in the range from -110 dBm to -90 dBm, corresponding to input powers from

10 fW to 1 pW. These 1 dB compression points are comparable to those seen in other

SQUID-based microwave amplifiers[73] and 1-2 orders of magnitude higher than those

4The gain was normalized to the simulated gain at a -130 dBm input power.
5Specifically, the gain was calculated assume conjugate matching at the output and input of the

SLUG.
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(a)

(b)

Figure 3.19: (a)Gain, and (b) added noise quanta versus frequency for a SLUG amplifier
with Ib = 1.8 I0, and ΦB = 0.35 Φ0. The red traces correspond to a three-section
input matching network with quarter-wave resonances at 5 GHz and with characteristic
impedances of 24.4 Ω, 17.4 Ω, and 3.0 Ω, derived from numerical minimization of the
SLUG quantum noise over the band from 4.5 to 5.5 GHz. The blue traces correspond
to a matching network consisting of three sections with characteristic impedances of
29.8 Ω, 7.1 Ω, and 1.1 Ω followed by a series capacitance of 38 pF to tune out the
imaginary part of the SLUG input impedance at a frequency of 5 GHz.
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(a) (b)

Figure 3.20: (a)Normalized gain versus input power for a SLUG element conjugately
matched to the input and output for Ib = 1.8 I0 and various flux bias points. (b) SLUG
dynamic range versus flux for various current bias points; we assume a zero-temperature
quantum spectral density for the SLUG shunt resistors.

achieved with typical Josephson parametric amplifiers[47]. Amplifier dynamic range is a

ratio of the 1 dB compression point to the noise power contributed by the SLUG over a

given bandwidth. In Figure 3.20(b), we plot SLUG dynamic range; here, we have used

the zero-temperature quantum spectral density for the shunt resistors of the SLUG. We

find a typical value of 130 dB Hz,corresponding to a dynamic range of 40 dB in an am-

plifier bandwidth of 1 GHz. For applications related to the dispersive readout of qubits

in a circuit QED architecture, where the focus is on the measurement of signals at the

level of single microwave quanta in bandwidths of order 100 MHz to 1 GHz, the dynamic

range of the SLUG is more than adequate.

3.9 Effect of Input Circuit Admittance

In the above analysis, we have solved for the behavior of the isolated SLUG element

and then treated the device as a “black box” with known scattering parameters for
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Figure 3.21: (a)Model for circuit analysis with finite input admittance. (b) Amplifier
circuit with filter inductor Lf to decouple SLUG from modes of the input circuit.

the purpose of designing appropriate matching networks. In reality, the nonvanishing

admittance at the device input and output will modify the device characteristics, and a

complete treatment must take loading by the external circuit into account. The scattering

parameters will now depend on the particular realization of the matching network and

a full exploration of the space of design parameters become tedious. However, we find

that the performance of the SLUG amplifier is not greatly affected by the nonvanishing

input circuit admittance, particularly once modest steps are taken to decouple the SLUG

element from the higher-order modes of the resonant input matching network.

To take into account the admittance of the resonant input matching network, we

modify the junction equations of motion 3.9 to include an additional term representing

the current drawn by the input circuit. The circuit model is shown in Figure 3.21(a).

The input transmission line of impedance Z0 can be exactly modeled as a pair of coupled,
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time dependent voltage sources EL and ES. These are related to the voltages VL,S and

currents IL,S at the two ends of the transmission line as follows:

EL(t) = VS(t− tD) + Z0IS(t− tD),

ES(t) = VL(t− tD)− Z0IL(t− tD), (3.47)

where tD = 1
4fλ/4

is the propagation delay along the transmission line. The input current

is then determined by the additional differential equation:

İL =
1

L

[

Φ0

2π
(δ̇2 − δ̇1)− EL + ILZ0

]

. (3.48)

Using the modified equations of motion for the junction phases, we calculate the dc

characteristics of the SLUG. The I-V and V-Φ curves of the same 10 pH, βL = 1 SLUG

with a 10 GHz quarter-wave input transformer are shown in Figures 3.22(a) and 3.22(b).

We observe sharp Shapiro step-like structure at voltages corresponding to Josephson

frequencies that are integer multiples of the half-wave resonance of the input circuit.

While quantum fluctuations of the SLUG shunts smooth out this structure somewhat, it

is clearly desirable to decouple the SLUG from the higher-order standing wave modes of

the input circuit, as these mode swill limit amplifier dynamic range and lead to excess

noise.

To suppress the resonances of the input circuit, we insert a filter inductor Lf of order

tens of pH between the input coupler and the SLUG element, as shown in Figure 3.21(b).
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(a)

(b)

(c)

(d)

Figure 3.22: (a)I-V curves of a SLUG operated with a transmission line input circuit
with characteristics impedance Z0 = 2 Ω and bare quarter-wave resonance at 10 GHz
for various flux bias points. (b) V-Φ curves of the same SLUG for various current bias
points. (c) - (d) As in (a) - (b), respectively, for a circuit incorporating a 60 pH filter
inductor Lf to decouple the modes of the SLUG from the modes of the input circuit.

In Figures 3.22(c) and 3.22(d), we plot the SLUG characteristics with a 60 pH filter

inductor in place. We see that the resonant structure is greatly suppressed.

We can now calculate the gain and noise properties of a the complete circuit of

Figure 3.21(b) by performing a full integration of the amplifier equations of motion.

Power gain and bandwidth are determined by driving the amplifier with a sinusoidal input

tone and monitoring the SLUG output at the excitation frequency. In Figure 3.23(a), we
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Figure 3.23: (a) Gain and (b) added noise quanta for SLUG amplifiers calculated using
the “black box” scattering parameters of the isolated SLUG or by solving the full circuit
model of Figure 3.22. The SLUG was biased at Ib = 1.8 I0 and Φb = 0.35 Φ0. The
input matching network consists of a 2 Ω transmission line section with bare quarter-
wave resonance at 10 GHz followed by a filter inductor Lf = 60 pH. The blue trace is the
solution to the full circuit simulation, while the red trace shows the “black box” solution.

plot frequency-dependent gain for the SLUG circuit. The blue trace is the result of the

full circuit simulation, where we have taken a transmission line input with characteristic

impedance Z0 = 2 Ω and a length corresponding to a bare quarter-wave resonance at 10

GHz, significantly higher than the amplifier operating frequency of 4.5 GHz in order to

compensate for the additional reactive loading by the filter inductor. The red trace was

obtained by treating the SLUG as a “black box” with scattering parameters calculated

as described above in Section 3.4. The agreement with the full circuit simulation is good,
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confirming that the filter inductance has effectively isolated the modes of the SLUG and

the input circuit.

To calculate the frequency-dependent added noise, we simulate a “hot load/cold load”

experiment where we compare the power spectra SV,cold and SV,hot at the device output

for source resistances at temperatures T = 0 and Tb respectively. In the quantum regime,

we find:

coth(~f/2kB(Tb + Tn))

coth(~f/2kBTn)
=

SV,hot

SV,cold

. (3.49)

The added noise number is then obtained from Equation 3.30. In Figure 3.23(b), we plot

the added noise of a 5 GHz SLUG amplifier calculated with the full circuit model and

with the “back box” scattering parameters of the isolated SLUG. The noise magnitude

is similar in the two cases, although the full circuit solution predicts a higher frequency

for the minimum in the amplifier noise contribution. We understand the shift in the

frequency-dependent noise characteristics to be due to a modification of the circulating

current spectral density SJ by the nonvanishing admittance of the input circuit.

3.10 Reverse Transfer Function

So far we have only considered the forward transfer function [VI from Section 3.4] in

our analysis of the SLUG amplifier. The reverse transfer impedance V R
I = ∂Vin/∂Iout is

the voltage that develops across the input circuit due to a current excitation at the output

of the SLUG. Earlier numerical studies [86] of SQUID amplifiers have also treated the

SQUID as a fully non-reciprocal gain element with a negligible reverse transfer function
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[88]. This is may be an appropriate assumption for SQUID based amplifiers at low-

frequencies, but the reverse transimpedance is not negligible at higher frequencies:

V R
I = ρRT

(ωL)2

R
+ jχR

TωL, (3.50)

where ρRT and χR
T are the dimensionless real and imaginary reverse transfer function

coefficients, respectively. We’ve calculated both ρRT and χR
T for a SLUG with βL = 1,

βC = 0.8, a junction self capacitance C = 50 fF, and SLUG inductance L = 10 pH at three

different current biases, shown in Figure 3.24. For the frequencies and SLUG parameters

of this chapter, the imaginary part of V R
I dominates the reverse transimpedance. The

most striking feature of the calculated χR
T in Figure 3.24(b) is the four-orders of magnitude

asymmetry close to the supercurrent branch of the transfer function. This asymmetry

suggests that the reverse gain of a SLUG based amplifier will be significantly lower when

biased on one side of the V-Φ curve. An amplifier that isolates the measured system

from the amplifier chain is highly desirable for cryogenic qubit measurements, reducing

the need for bulky, magnetic isolators at the cold stage of the measurement.

3.11 Lumped Element Matching Network

In this section, we separately consider the SLUG amplifier with a lumped element

input matching network. We match the 50 Ω generator to the SLUG through an

inductor-capacitor impedance transformer illustrated in Figure 3.25(a), with resonance

ω0 = 1/
√
LRCR and characteristic impedance Z0 =

√

LR/CR. This simple lumped

element circuit is more compact than a quarter-wave transformer; moreover, the LC
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Figure 3.24: The real (a) and imaginary (b) coefficients of the reverse transimpedance
V R
I for the SLUG at different current biases: 1.8 I0(black), 1.9 I0(blue), 2.0 I0(red).

matching network has a single resonant mode at ω0, resulting in a clean transfer function

without having to take extra precautions, like the choke inductor of Section 3.9.

In Figure 3.26, we compare the transfer function, forward-gain, and reverse-gain of the

SLUG amplifier when solving the equations of motion for the full-circuit [Figure 3.25(a)]

and in the “black box” approximation [Figure 3.25(b)]. Notice that the “black box”

approximation in Figure 3.25(b) now includes a voltage source Vi = V R
I Iin for calculating

the reverse gain. The solutions were solved for a SLUG with βL = 1, βC = 0.8, a

junction self capacitance C = 50 fF, and SLUG inductance L = 10 pH, for a current bias

Ib = 1.9 I0. The LC matching network was designed with ω0 = 8 GHz and Z0 = 2 Ω, for

a LR = 40 pH and CR = 10 fF. Comparing the full circuit simulations of Figures 3.26(a-

c) to the “black box” solutions of Figures 3.26(d-f) reveals little noticeable difference

between the two numerical approaches.

As predicted in Section 3.10, the reverse gain of the amplifier is asymmetric with an

optimal flux bias point close to Φb = 0.37 Φ0, where the reverse-gain peaks at about -60

dB. In Figure 3.27, we plot the forward-gain (a), reverse-gain (b), and added noise quanta
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Figure 3.25: The full-circuit (a) and “black box” model (b) of the SLUG gain element
with input matched to RG through a lumped element matching network with inductance
LR and capacitance CR.

(c) as a function of frequency for different flux biases, solved using the “black box” model.

Similar to the performance of the quarter-wave transformer of Section 3.9, the amplifier

can operate with forward-gain close to 15 dB and a bandwidth of approximately 300

MHz, while adding approximately one quantum of noise.

3.12 Hot Electron Effects

At milikelvin temperatures, electrons decouple from the phonons and the electron

temperature of the SLUG shunts can be significantly higher than the bath temperature.

Wellstood et al. [89] showed that the electron temperature TE in a metal thin film resistor

is given by:
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Figure 3.26: The V-Φ curve (a), forward-gain (b), and reverse-gain (c) for the full-circuit
model of Figure 3.25(a). The V-Φ curve (d), forward-gain (e), and reverse-gain (f) for
the “black box” model of Figure 3.25(b). The solutions were solved for Ib = 1.9 I0,
LR = 40 pH and CR = 10 pF. The gain plots are solved as a function of flux bias and
signal frequency, where the gain is in units of dB.

TE =

(

P

ΣΩ
+ T 5

Ph

)1/5

, (3.51)
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Figure 3.27: Forward-gain (a), reverse-gain (b), and added noise quanta (c) vs. fre-
quency for the the SLUG amplifier with Ib = 1.9 I0, LR = 40 pH and CR = 10 fF. The
solutions were obtained with the “black box” model of Figure 3.25(b), at flux biases of
0.41 Φ0 (blue), 0.39 Φ0 (green), 0.3775 Φ0 (red), and 0.3625 Φ0 (black).

where P is the power deposited in the resistor, Σ is a material constant typically on the

order of 109 W/(m3K5), Ω is the normal metal’s volume, and TPh is the phonon tem-

perature. The elevated temperature of the shunt resistors translates directly to elevated

noise temperature of the amplifier. For a device with fixed βC , the power dissipation in

the shunts scale as 1/R3. Hot electron effects will be particularly relevant for the mi-

crowave amplifiers discussed here, as optimal performance is achieved for a small SLUG

inductance, corresponding to large critical currents and small shunt resistances.

A proven strategy to promote thermalization of the SLUG shunts at milikelvin tem-

peratures is to fabricate large-volume normal metal cooling fins in metallic contact with
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the resistor element. At low temperatures, the inelastic diffusion length is of order sev-

eral mm [89]; the cooling fins thus allow hot electrons generated in a localized region

of the shunt resistor to diffuse over a large volume and thermalize with cold electrons

and phonons. Wellstood et al. [90] demonstrated a significant reduction in the electron

temperature of dc SQUIDs incorporating 400×400 µm2 CuAu cooling fins with thickness

around 1 µm, with measured electron temperatures under 40 mK. A similar approach has

been used to suppress hot-electron effects and reduce the noise temperature of microstrip

SQUID amplifiers operated in the radiofrequency regime[69]. It would be straightfor-

ward to integrate normal metal cooling fins with area of order 1 mm2 in a standard

microwave SLUG amplifier geometry without compromising the microwave integrity of

the circuit. We anticipate that the addition of such cooling fins will make it possible to

attain electron temperatures under 100 mK for the device parameters considered here,

corresponding to operation far in the quantum regime for frequencies in the range from

5-10 GHz. We experimentally examine the electron temperature of the resistors of our

SLUGs in Section 5.5.
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Chapter 4

SLUG Fabrication

In this chapter, we discuss the niobium SLUG fabrication process. The SLUG based

amplifier has gone through many design iterations since its conception. For the purpose

of this thesis, we’ll describe the state-of-the-art SLUG amplifier and justify our design

choices throughout this chapter and the next by drawing on the lessons learned from

earlier SLUG generations. In Section 4.1, we first populate our fabrication tool box with

descriptions of the common thin-film deposition and processing tools used by our lab.

We then build up the six layers of the SLUG body in Section 4.2. And in Section 4.3, we

map the integrated-circuit layout to the lumped-element components of the ideal SLUG

described in the circuit-schematic of Figure 3.2.

4.1 Fabrication Toolbox

4.1.1 Superconductor Deposition

The main superconductor deposition system in our lab is the Kurt-Lesker sputter

deposition chamber, which houses both an aluminum and niobium target, along with
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an ion mill gun for in situ surface cleaning. The wafer is first placed on an aluminum

platen and clamped in place at the circumference of the wafer, where an indium O-ring is

used to thermally sink the wafer. The sample is cleaned with dry nitrogen before being

pumped down to the vacuum chamber base pressure (on the order of 10−8 Torr).

We first clean the sample surface using the ion mill. The ion mill removes material

from the surface of the sample using a physical etch process. Argon ions are generated by

a plasma and accelerated towards the sample, removing material on impact. Typically,

we operate the mill with an argon pressure of 10−4 Torr, a bias voltage of 800 V, and a

beam current of 20 mA, resulting in an etch rate of approximately 1 nm/s. We mill for

30 seconds to ensure that the surface is clean of unwanted oxide and other contaminates

before depositing the niobium film. It should be noted that we mill before every metal

deposition. For the ground layer milling is less critical, but when making metal-to-

metal contact and Josephson junctions it is important to have an oxide-free surface. To

guarantee that the unwanted oxide has been removed, we etch for longer than needed,

which causes damage (etches and roughens the surface) to the underlying layer. This

must be considered when designing the fabrication workflow.

After cleaning the surface, we are ready to deposit our metal layer. Sputter deposition

relies on bombarding a target with highly energetic ions. The target is composed of the

material (aluminum or niobium) to be deposited on the sample. The energetic ions

(argon plasma magnetically confined about the target) physically eject the atoms of the

target upon impact, which then coat the entire surface of the chamber, including the

sample. For niobium deposition, the argon plasma (at pressure 3.9 mTorr) is created

with a constant power regulated dc source. Niobium deposition occurs in two steps:

with a shutter protecting the sample, the target is cleaned for two minutes with power
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400 W. The power is then increased to 500 W and the shutter is opened for deposition,

which occurs at a rate of 50 nm/min.

Special precautions must be made to reduce the stress of niobium films. Film stress

depends on many factors: deposition power, argon pressure, sample distance to target,

and the age of the target. The stress is calculated by measuring the curvature of a

substrate with and without the niobium film. We periodically check the stress of our

niobium films and make adjustments in argon pressure when needed.

4.1.2 Niobium Lithography and Etch

The niobium film is first cleaned with Acetone and IPA, and then spun dry on a wafer

spinner. Next, a uniform film of Shipley Microposit SPR955 positive photoresist is spun

onto the wafer at 3000 rpm for 30 s, followed by a 95◦ C pre-bake for 60 s. The film

is exposed by the Nikon wafer stepper for approximately 240 ms. The sample is then

post-baked at 110◦ C for 60 s and then agitated in the developer (MF-24A) for 60 s.

For a positive photoresist, the developer removes the exposed photoresist, opening up a

window for selective etching of the metal. While MF-24A does slowly etch aluminum, it

does not affect niobium (or SiOx). After developing the resist, the wafer is rinsed for 60

s and dried with nitrogen.

The exposed niobium is then etched in a reactive ion etch (RIE) chamber, where

the material is removed by exposing it to a chemically reactive plasma. For niobium,

this is done in an atmosphere of SF6. An RIE etches anisotropically, which can lead

to an etch profile that is difficult to cover with the subsequent thin film (resulting in

poor “step coverage”). The gas flow, pressure, and power were optimized so that the

photoresist etches at the same rate as the niobium, allowing us to transfer the resist

profile to the niobium. After developing the resist, the wafer is placed on a 120◦ C
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1 µm

Figure 4.1: SEM image of niobium etch profile in RIE system with SF6=15 sccm, O2=20
sccm, pressure = 200 mT, power = 150 W, resulting in a 110 nm/min etch rate for both
the Nb and resist.

hotplate for 3 minutes, which relaxes the resist and results in a sloped profile near the

edge of the pattern. A scanning electron microscope (SEM) image of a Nb film etched

with the optimized RIE recipe is shown in Figure 4.1, where we’ve used the following

etch parameters: SF6=15 sccm, O2=20 sccm, pressure = 200mT, power = 150 W, giving

a 110 nm/min etch rate for both Nb and resist. We typically over-etch the Nb by 50%,

or 90 s for a 100 nm film. This SF6 recipe will also etch Si and SiOx, albeit at a slower

rate – the selectivity should be considered when designing the processing workflow.

The remaining resist must be stripped from the sample after the etch, which can

be difficult to remove. The sample gets hot during the etch which causes the resist

to strongly adhere to the surface. A 30 minute soak in Acetone and/or a hot bath of

Microposit 1165 will strip the resist – repeat as needed. We can reliably produce 1 µm

features with this process.
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Figure 4.2: SEM image of SiOx etch profile in RIE system with CHF3=50 sccm, O2=20
sccm, pressure = 100 mT, power = 150 W, for a 30 nm/min etch rate for both SiOx and
resist.

4.1.3 Silicon Oxide Deposition and Processing

We grow a plasma enhanced chemical vapor deposition (PECVD) silicon oxide (SiOx)

film as the wiring dielectric for the SLUG amplifier. A PECVD tool works by bringing

together an atmosphere of different gases that react, with the resultant product pre-

cipitating as a solid onto the sample. An rf plasma is generated to catalyze the reac-

tion. Additionally, the sample is heated to promote surface mobility that reduces surface

roughness and pinholes. We’ve measured a deposition rate of 36 nm/min for the follow-

ing recipe in the Plasmatherm PT70: 900 sccm flow of N2O; 400 sccm flow of SiH4; 900

mTorr chamber pressure; 25 W plasma power; substrate temperature of 250◦ C. It should

be noted that the deposition rate and uniformity change with chamber cleanliness.

We process SiOx using the same lithography steps as discussed above in Section 4.1.2,

except we treat the surface with HDMS between cleaning and spinning the resist to

promote adhesion of the resist to the SiOx. We use the same RIE tool for etching SiOx
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and niobium, but with CHF3 as the active reactant. A recipe was also optimized for the

SiOx etch to give a 45◦ profile to the edge, as shown in the SEM image of Figure 4.2,

where we’ve used the following parameters for an etch rate of 30 nm/min: CHF3=50

sccm; O2=20 sccm; pressure = 100 mT; power = 150 W. Including over-etch, we typically

etch a 200 nm film of SiOx for 9 min.

4.1.4 Junction Oxidization

We use a Nb/Al-AlOx-Al/Nb stack to realize our junctions [84, 85]. Junction oxidiza-

tion takes place in the sputter deposition system so that the junction stack can be grow

immediately after the native oxide is removed from the bottom electrode of the stack.

A clean junction interface is critical for realizing a robust and repeatable high-critical

current junction. For this reason, we first mill the sample for 45 seconds to ensure that

the surface is clean of native oxide inside the junction via. Next, a thin layer of aluminum

is grown (about 8 nm) at low power. A thin aluminum layer won’t uniformly cover the

niobium, while a thick aluminum layer runs the risk of shorting out the junction by cover-

ing the via-step. Next, oxygen is introduced into the chamber to form the tunnel barrier.

Initially, the chamber is seeded with a 1 mTorr oxygen flow for two minutes. The gate

valve is then closed, allowing the oxygen pressure to rise to the target value. The sample

is held in the oxygen atmosphere for 10 minutes, after which the oxygen is pumped out.

A 4 nm cap of aluminum is deposited, directly followed by 100 nm of niobium.

The junction oxidation is the most variable part of the SLUG fabrication process.

The critical current of the junctions is set by the oxidation exposure, which is just the

product of the oxygen partial pressure and the time. The critical current density (JC ,

critical current per junction area) scales inversely with the square root of exposure [91], as

experimentally verified in Figure 4.3. We use this data to determine our exposure, where
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Figure 4.3: Experimentally determined critical current density for a Nb/Al-AlOx-Al/Nb
junction stack versus junction exposure.

we typically target between 1.5-3 kA/cm2 for the SLUG process. We can also estimate

the junction critical current by probing their room temperature resistance, using the

following expression [62]:

I0 =
π∆

2RN

, (4.1)

where RN is the probed normal state resistance, and ∆ is the superconducting gap energy,

which for niobium ∆ ≈ 1.5 meV.

4.1.5 Resistor Fabrication

The junction shunt resistors are formed from palladium Pd backed by a thin layer of

titanium Ti used for adhesion. The metals are deposited with an electron beam physical

vapor deposition system in which the target metal is bombarded by a beam of electrons
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in a high vacuum (10−9 Torr for our system). The electron beam transfers its kinetic

energy into thermal energy upon hitting the target metal, causing the metal to melt and

evaporate into the vacuum. The evaporated metal coats everything within the line of

sight of the molten metal. The deposition rate is controlled by adjusting the electron

beam current and monitored using a quartz crystal. The resonance of the quartz crystal

is modified by the amount of metal on the surface of the monitor. Tracking the change

in crystal resonance provides realtime feedback for the deposition rate.

Our evaporation system has an in situ ion mill, allowing us to clean the native oxide

off the surface of the sample before deposition. A mill time of 17 s has been calibrated

for our resistor process. After milling, 3 nm of Ti is deposited as an adhesion layer,

followed by a layer of Pd with a thickness determined by the desired resistance. The

room temperature resistance of our thin film Pd scales inversely with thickness, where a

20 nm thick Pd film has a room temperature resistance of 12.5 Ω/�1. The RRR value of

a metal is the room temperature resistance divided by the films resistance at 4 K2. The

RRR is about 2.5 for a 20 nm film, giving a Pd film with 5 Ω/� at low temperature.

Resistors are formed using a liftoff process. Before evaporating the metal, a negative

image of the resistor is formed in the photoresist. The sample is then uniformly coated

by the metal in the evaporation chamber. Next, the resist is removed and any metal on

top of the resist lifts off with the resist. For lithography, we clean the wafer and prep

the surface with HDMS. We then spin on AZ-5214 negative resist at 4000 rpm. The

pre-bake is once again 60 s at 95◦ C, and then the wafer is exposed at a lower dose of

75 ms. Following exposure, the sample is post-baked for 60 s at 110◦ C. Next, the wafer

1Ω/� is a standard expression for sheet resistance, where you count the number of squares in the
film footprint between your measurement leads.

2The resistance of Pd films do not change much below 4 K. We use 4 K because these resistance
measurements are quickly done in liquid helium.
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is uniformly exposed with UV light on the contact aligner for 60 s. Finally, the wafer

is developed for 45 s, rinsed, and dried. Unlike positive resist, AZ-5214 undercuts the

step edge of the resist profile to promote liftoff. After lithography and metal deposition,

the wafer is soaked in Acetone for around one hour, or until most of the undesired metal

has lifted off. A light ultrasonic treatment is sometimes necessary to complete the liftoff

process.

4.2 Niobium SLUG Recipe

The SLUG amplifier is realized through the deposition and processing of six thin film

layers, all fabricated at the University of Wisconsin-Madison using standard photolithog-

raphy techniques. Each layer of the isolated SLUG element is illustrated by the 6 panels

of Figure 4.4.

4.2.1 Ground Electrode

The microwave integrity of the chip must be considered when laying out the SLUG

amplifier. The ground electrode is wire bonded to a sample box held at the ground poten-

tial. At high frequencies, the return path of the current flowing from on chip components

to ground will have a non-negligible inductance. The currents in a superconducting film

flow at the edges of the lithographically defined features. To minimize ground-loops and

parasitic chip resonances it is important to maintain the integrity of the ground electrode.

The ground electrode is a sputtered 100 nm thick layer of niobium grown directly

on a commercially provided 3” oxidized silicon wafer, where the 150 nm thick thermal

oxide electrically isolates the on chip components. The layer is lithographically defined

and etched for 90 s. When designing the SLUG, we go to great lengths to minimize
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(a) (b)

(c) (d)

(e) (f)

25 µm 25 µm

1 µm
15 µm

5 µm 9 µm

Figure 4.4: The ground layer (blue, negative) (a), bottom-to-ground via (yellow, nega-
tive) (b), bottom electrode (green, positive) (c), top-to-bottom via and junctions (black,
negative) (d), top electrode (red, positive), and resistors (purple, positive) (e). Negative
(positive) means the image is the absence (presence) of the thin film.
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parasitics that aren’t included in the ideal lumped element SLUG model. For example,

the cavities in the ground electrode [Figure 4.4(a)] reduce the capacitance between ground

and the higher-level metalizations. The strip of ground between the two cavities screen

the inductive branches of the SLUG loop, which is necessary for efficient coupling between

the input signal and the SLUG loop.

4.2.2 First Dielectric Layer

Next, a 200 nm of PECVD SiOx is deposited. The dielectric thickness will be reduced

to approximately 170 nm during the subsequent ion mill step before depositing the bottom

electrode. Large vias [Figure 4.4(b)] that connect the bottom electrode to ground are

lithographically defined and etched for 9 mins.

4.2.3 Bottom Electrode

The bottom electrode [Figure 4.4(c)] is a 100 nm thick layer of sputtered niobium

that makes up the L inductive branch of the SLUG loop. Notice that the SLUG bias

current Ib and voltage out lead are defined in the the bottom electrode, extending to the

right of the SLUG body.

4.2.4 Second Dielectric Layer

A second 200 nm layer of PECVD SiOx is deposited and etched with the via pattern

seen in Figure 4.4(d). The vias define both the explicit 2 µm2 junctions (circular vias

separated by 15 µm in the Figure) and the wiring vias connecting the top to the bottom

electrode. Each via defined in the second dielectric layer etch is a Josephson junction.

A parasitic junction will behave like a via so long as the junction critical current isn’t
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exceeded during normal amplifier operation 3. Parasitic junctions have a larger area

than the explicit junctions to ensure that the “vias” don’t switch to their voltage state.

This comes at the price of a larger SLUG footprint and, in consequence, more parasitic

capacitance. These parasitics could be avoided with additional processing steps.

4.2.5 Junction Growth and Top Electrode

The sample is then milled for 45 s to ensure that a clean interface exists before grow-

ing the junctions. We follow the junction growth procedure found in Section 4.1.4. The

100 nm niobium top electrode defines the 2L inductive branch of the SLUG, which is a

1 µm wide trace in Figure 4.4. Notice that the SLUG body gets wider to accommodate

the junctions, where we like to leave 1 µm clearance of metal surrounding vias to ac-

commodate possible lithography imperfections (misalignment, over etch, over exposure,

etc.). The input signal comes in from the 5 µm trace to the left of the SLUG body and

is grounded through the SLUG body at the right of the SLUG. The output voltage (and

input current bias) is extracted from the top electrode through a via to the bottom elec-

trode. The top electrode is etched for 90 s in the RIE chamber. An additional mill step

and wet etch in Transene removes the thin layer of aluminum grown to cap the junction.

4.2.6 Resistor

Two parallel resistors shunt each junction, where each resistor is comprised of three 3

µm × 3 µm squares in series. We use two resistors per junction to maximize the volume-

per-watt of dissipated power in the shunt resistors, reducing the electron temperature and,

in consequence, the added noise. One must also consider the parasitic inductance and

3This isn’t totally correct. In the superconducting state the junction still behaves like a nonlinear
inductor which could in principle affect the behavior of the SLUG. According to Equation 2.6, LJ(0)
scales inversely with I0 of the junction.
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capacitance of the resistor traces: removing the middle-electrode underneath the resistor

will reduce the parasitic capacitance, but at the price of a larger series inductance due

to the absence of screening. Inductively shunted Josephson junctions are well known

to exhibit chaotic dynamics [92, 93, 94], leading to rich structure in the I-V curves and

complicated noise behavior. We chose to minimize the inductance by keeping the middle

electrode below the resistor. The capacitance between the two traces is approximately 5

fF, which is significantly less than the self-capacitance of the junctions.

4.3 Design Choices

The SLUG amplifier described in Chapter 3 has a βL = 1, and a βC = 0.8, with

SLUG loop inductance L = 10 pH and junction capacitance C = 50 fF. This corresponds

to a junction critical current of I0 = 100 µA – a critical current density of 10 kA/cm2

for a 1 µm2 junction area with a reasonable 50 fF/µm2. A SLUG with these parameters

are within reach of our cleanroom facilities, but for this thesis we took a conservative

approach when designing the SLUG amplifier.

The junction area of the fabricated SLUG shown in Figure 4.5 has a designed 2 µm2

area, but, with overetch, the junction area is closer to 2.2 µm2 for a self capacitance

of C = 120 fF. While we’re currently exploring 1 µm2 junction technology, it can be

difficult to get a consistent exposure across the 3” wafer for 1 µm2 vias. Recipes for high

quality Josephson junctions with a large critical current density have been developed

by the superconducting community, but junctions with current densities approaching 10

kA/cm2 rely on a Nb-AlOx-Nb trilayer process [95, 96, 97, 98]that we are still developing4.

4For a trilayer junction we need a low-temperature dielectric process for depositing an insulator after
the junction has been defined–our standard 250◦ C SiOx PECVD process would damage the junction.
An rf-sputtered SiOx would be a possible alternative. Additionally, we need to make contact to the top
of the junction after depositing the dielectric. This would involve either an anodization and etch (see
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40 µm

15 µm

(a)

(b)

Figure 4.5: (a) Layout of the SLUG amplifier, with the lumped element input matching
network comprised of a parallel plate capacitor to ground(yellow box), and the in-series
coplanar inductor (blue box). The orange box highlights the output bonding pad. The
SLUG (red box) is blown up in (b).
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d

d

t

t

Top Electrode

Bottom Electrode

Ground Electrode

Figure 4.6: Simplified SLUG stack-up to illustrate the inductor paths of the SLUG loop.
The input inductance is formed by the top electrode with the inductive path highlighted
in blue. The second branch inductance is formed by the bottom electrode with the
inductive path highlighted in red. The SLUG loop is highlighted in green.

As described in Section 4.1.4, we can reliably make 1.5-3 kA/cm2 junctions, or junctions

with critical currents of 30− 60 µA for our 2 µm2 via process.

A simple cartoon stack-up of the SLUG body is shown in Figure 4.6 to illustrate the

inductive elements comprising the SLUG body. The SLUG input inductor arm LTE is

the loop defined by the top electrode, where the return currents flow through the ground,

while the other arm of the SLUG inductive loop LBE is formed by the bottom electrode

and the ground plane. In general, the total inductance LT has a geometric LG and a

kinetic contribution LK , where the geometric inductance of a microstrip is approximated

by:

LG = µ0tℓ/w, (4.2)

HYPRES design guide) or planarization using a chemical mechanical polishing (CMP) tool (see MIT
Lincoln Lab design guide).
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where µ0 = 4π × 10−7 H/m is the vacuum permeability constant, w is the width of the

microstrip, ℓ is the length of the inductor, and t is the distance between the microstrip

and the return currents in the ground plane. For Equation 4.2, the distance between the

trace and ground is the space where a magnetic flux can exist, unimpeded. Following

Mazin et al. [99], we can include the kinetic inductance with the following expression:

LT = LG

[

1 +
2λ

t
coth(d/λ)

]

, (4.3)

where λ is the thin-film London penetration depth, which we assume to be 100 nm for our

niobium films. The three metal traces are equally spaced by dielectric distance t = 160

nm, as in Figure 4.6, with film thickness of d = 100 nm. We compare branch induc-

tances calculated with Equation 4.3 to the inductances calculated using the FastHenry

simulation package[100] in Table 4.1.

Table 4.1: SLUG Inductance
w ℓ Lest

top Lest
bottom LFH

top LFH
bottom MFH

t,b LFH MFH

1 µm 20 µm 17.2 pH 10.6 pH 19.2 pH 7.3 pH 3.7 pH 9.1 pH 5.2 pH
2 µm 40 µm 17.2 pH 10.6 pH 18.3 pH 8.3 pH 5.0 pH 9.5 pH 6.1 pH

The lumped element input matching network (Figure 4.5) is just a parallel plate

capacitor to ground and an in-series coplanar inductor. We design the inductor to be

much shorter than the relevant wavelengths, and with low capacitance. For a transmission

line, the inductance per unit length Lℓ and capacitance per unit length Cℓ are related to

the phase velocity vph and impedance Z0 by:
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Lℓ = Z0/vph, (4.4)

Cℓ = 1/Z0vph, (4.5)

where vph and Z0 are set by the materials and geometry of the transmission line [101]. By

picking a large Z0, we reduce the parasitic capacitance of the lumped element capacitor,

which in turn pushes the resonance of the inductor to higher frequencies. This simple

analysis does not take take kinetic inductance or the extra inductance coming from the

edges of the finite-length inductor into account.

The parameters of the non-ideal SLUG are then plugged into the numerical toolbox

assembled in Chapter 3 to calculate the scattering parameters of the amplifier. Figure 4.7

plots the transfer function [(a),(d)], the forward-gain [(b),(e)], and reverse-gain [(c),(f)]

for a SLUG with βL = 0.3, βC = 0.5, L = M = 10 pH, C = 120 fF, and a matching

network with Z0 = 2 Ω and f0 = 8 GHz. The lower βC was chosen to ensure that the

SLUG is non-hysteretic in the presence of possible parasitic capacitance channels. To

capture the effect of the input circuit on the SLUG dynamics, the equations of motion for

the full circuit were solved [Figure 3.25(a)]. From the simulations, the fabricated SLUG

amplifier will have forward-gain of about 15 dB with a bandwidth approaching 200 MHz.

The reduced critical current and βC results in an amplifier with lower gain, where the

transfer function is proportional to I0R [Equation 3.12].

Shapiro step-like structure from the LC resonance of the input circuit is present at

bias points close to the supercurrent branch of the V-Φ curve in Figure 4.7(d). Two

resonant plateaus occur at voltages corresponding to Josephson frequencies of about 6.5

GHz and 13 GHz. The step at 6.5 GHz lines up with the input-circuit resonance (8
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Figure 4.7: The V-Φ curve (a), forward-gain (b), and reverse-gain (c) for the full-circuit
model of Figure 3.25(a). The V-Φ curve (d), forward-gain (e), and reverse-gain (f)
examined close to the supercurrent branch. The solutions were solved for Ib = 1.9 I0,
LR = 40 pH and CR = 10 pF. The gain plots are solved as a function of flux bias and
signal frequency, where the gain is in units of dB.
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GHz) reduced by the input inductance of the SLUG (20 pH). The origins of the 13 GHz

step is a feature still under investigation. Notice that the amplifier has high forward and

reverse-gain with a very low bandwidth at bias points close to the resonant steps; the

dynamic range and noise performance will also suffer from this non-linear behavior of the

SLUG.
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Chapter 5

SLUG Measurements

In this chapter we discuss measurements of the SLUG amplifier. We’ve fabricated

and measured SLUG amplifiers on over 40 wafers in the last three years. Instead of

fleshing out the evolution of the every third antenna and second tail, we concentrate on

a few choice amplifiers that illustrate the steps taken to measure the dc characteristics

[Section 5.2], gain [Section 5.3], noise performance [Section 5.4] of a state-of-the-art SLUG

amplifier. We conclude with a discussion about the electron temperature of the shunt

resistors [Section 5.5].

5.1 Experimental Setup

5.1.1 Cryogenic Measurement Systems

Most SLUGs measured in this thesis are cooled down well below the transition tem-

perature of the niobium thin films comprising the SLUG (Tc = 9.3 K). The dc charac-

teristics (I-V and V-Φ curves) can be quickly measured at 4.2 K using a dip probe in a

liquid helium dewar. Dip probe measurements are used to screen devices before cooling
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them down for careful characterization. Dewar measurements are more susceptible to

environmental noise (magnetic and rf), and the relatively hot measurement suppresses

the junction critical current and washes out interesting resonant structure that may be

present at low temperatures.

The adiabatic demagnetization refrigerator (ADR) is a single shot cooling system that

can keep the measured sample below 100 mK for a few hours. The ADR is cooled down

to 4 K using a pulse tube cooler, while adiabatic demagnetization of a salt pill is required

to get the system down to the base temperature. The 24 hour turn around time of the

ADR makes this system attractive for quick measurements of the SLUG performance;

however, the small cold stage makes it difficult to do an in situ calibration of the gain,

and the limited hold time at the base temperature makes full characterization of the

noise and scattering parameters cumbersome.

The cryogenic workhorse of this thesis is the dilution refrigerator (DR), which has a

base temperature of 40 mK1 and can stay cold indefinitely. The refrigerator consists of

a nested set of shields that get progressively colder, all contained by a vacuum jacket.

The outer two shields are thermally anchored to a tank of liquid nitrogen and liquid

helium, which boil off at 77 K and 4 K, respectively. A thin capillary slowly feeds liquid

He into a small volume called the “1K pot.” This small volume is pumped by a vacuum

pump, lowering the boiling point of the liquid He to 1.5 K. A mixture of He-3 and He-

4 are circulated to reach the base temperature, where the cooling power is a result of

the entropy increase when mixing He-3 into He-4. The dilution unit consists of a still

that selectively removes He-3 from the mixture by evaporation, and a mixing chamber

where the He-3 is allowed to return into the mixture at the base temperature of the DR.

1The same DR historically cools to 25 mK, but with a lighter wiring heat load than the experiments
described in this thesis.
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The mixture must take thermal energy from the environment in order to conserve the

entropy of the system. A coil of heat exchangers efficiently cool the He-3 as it returns to

the mixing chamber using the evaporated He-3 headed to the still. Our DR has a large

sample stage ( 7” radius) which allows us to run the DR with multiple experiments on

the cold stage. A set of cryogenic coax-relays promote modularity and functionality.

5.1.2 DR SLUG Wiring

While we present data taken in both the ADR and the DR, we will only discuss the

details of a typical rf measurement in the DR. The wiring diagram for SLUG amplifier

measurements in the DR is shown in Figure 5.1. The microwave lines between the room
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temperature electrical feed-through and the 4K plate are semirigid CuNi coax lines with

a silver clad inner conductor to reduce electrical loss. Microwave lines below the 4K stage

are plain CuNi, as the silver plating places to large of a heat load on the colder stages.

There are 20 dB attenuators on the input microwave lines, heat sunk at both 4K and at

base temperature. The attenuation is necessary to prevent the thermal noise generated

up stream of the mixing plate from reaching the measured sample.

The SLUG amplifier requires a quasistatic flux and current bias. Lossy shielded brass

cables connect the room temperature port to a bank of brass RC low pass filters heat

sunk at 4 K. The brass filters are formed from a channel drilled into a brass block, with

the channel just large enough to accommodate the body of an axial resistor. Three axial

resistors are soldered mouth-to-tail, acting as a distributed resistance that is capacitively

coupled to the grounded brass block. The DR is setup for a standard 3-wire measurement

of the SLUG dc characteristics. Two channels are tied together downstream from the

resistors inside the brass filter bank. The two wires allow us to simultaneously current

bias the SLUG while reading out the heavily filtered average voltage at the output. This

arrangement is sensitive to both the desired SLUG dynamic resistance and the unknown

inline loss between 4K and the output of the SLUG. The explicit resistance in the filter

channel (1-10 kΩ) is much larger than the dynamic resistance of the SLUG, allowing

us to treat our voltage bias as a current source. A superconducting niobium coax line

electrically connects the 4K filter bank to the mixing plate. We use a superconductor to

minimize the power being dissipated on the cold stages, while also minimizing the thermal

link between plates. The dc signal is filtered again by a bank of copper powder filters

(CPF) that attenuate high frequency fields from eddy current losses in an inductively

coupled powder and does not require a series resistance.
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The dc flux bias and input microwave lines are tied together with a commercial

HP-11612A bias-T, which combines a low-frequency and high-frequency signal with little

insertion loss. The combined input signal goes into the common port of a modified Radiall

6-port switch. The switching is done by six solenoids that move pistons with a magnetic

field to close or open the connection. By choosing the polarity of the applied current, we

can either open or close any switch. The relay has been modified to operate at the base

temperature of the DR, where a switching sequence only raises the temperature of the

mix plate by approximately 5 mK. A superconducting NbTi wiring harness goes from 4

K to base temperature, with a manganin harness making the rest of the journey to room

temperature. A custom pulsed voltage supply controls the switch. A series of two switches

allow us to characterize five SLUGs on one cool down, with a calibration line on the sixth

channel. The calibration line is a low loss flexible copper coax line. On the common side

of the output coax relay is another bias-T which ties the I/V line into the amplified

output signal. We want to minimize loss between the SLUG amplifier and the HEMT

at 4 K in order to minimize the system noise temperature of our measurement chain

[Section 1.7.3], but we also need to reject thermal noise generated at the warmer stages

along with any backaction from the HEMT. An isolator is a non-reciprocal device that

allows signal to flow in one direction with little insertion loss, while attenuating any signal

from the output. Isolators rely on a strong magnet for their reciprocity. The isolators

at the mixing plate are double shielded with high permeability Cryoperm, but we still

make an effort to keep the isolators as far as possible from the superconducting samples.

A magnetic field will suppress junction critical currents and trap vortices in the thin film

superconductors of our samples. A niobium coax line connects the microwave signal at

the output to the input of a broadband JPL HEMT amplifier with noise temperature on

the order of 3K and gain approaching 30 dB.
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(a) (b)

Figure 5.2: (a) Brass box used to house the 2 mm SLUG amplifier. (b) 2 mm SLUG
chip bonded to PCB diving boards and box.

5.1.3 SLUG Packaging

The SLUG amplifier die is housed in the monolithic brass box pictured in Fig-

ure 5.2(a), with a closeup of the mounted die shown in Figure 5.2(b). The box cavity will

resonant in the 10s of GHz, and this box mode will couple to the high frequency Joseph-

son oscillations generated by the SLUG operated in its voltage state. For this reason, we

choose a normal metal brass box to dampen out the resonant modes of the cavity. The

ground plane of the chip is densely bonded to the box with both aluminum and gold wire

bonds, where the gold bonds heat-sink the die to the box. Densely packed short wire

bonds robustly ground the chip by minimizing the roughly 1 nH/mm inductance of the

bond. We did not pay close attention to the bond spacing, which can introduce crosstalk

between the output and input ports of the chip as discussed by Wenner et al. [102]. The

microwave feed lines are formed with a narrow strip of PCB material soldered to an SMA

connector on the outside of the box. The feed lines were designed to be nicely matched

to 50 Ω. The PCB “diving board” extends to the chip, with wire bonds making the final

electrical connection.
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Figure 5.3: I-V (a) and V-Φ (b) characteristics of SLUGA measured at 40 mK in a
DR. The I-V curves are taken at flux biases that minimize and maximize the positive
supercurrent. The V-Φ curves are taken at a handful of current biases: 60 µA (blue),
70 µ A (green), 80 µA (red), 90 µA (black), and 100 µA (purple).

5.2 dc Characteristics

A SLUG amplifier (designated SLUGA) was cooled down in the DR to 40 mK for

characterization. SLUGA is a 3 × 3 mm2 chip that houses a 2 µm wide and 40 µm

long SLUG body; the amplifier has an input LC matching network with a designed

characteristic impedance Z0 = 2 Ω and bare resonance f0 = 11.5 GHz . The measured

I-V and V-Φ characteristics of the SLUG are shown in Figure 5.3. The two I-V traces

in Figure 5.3(a) represent the maximum and minimum supercurrent when modulated by

the dc flux bias. The current source is a Wavetek function generator, and the measured

voltage is amplified and filtered at room temperature by the ×1000 PreAmp card. The

voltage was averaged on the order of 50 times over one period of the Wavetek. The

maximized supercurrent is 2I0, for a measured I0 = 50 µA; the slope of the voltage state

that linearly extrapolates to the origin (dashed line) is the total resistance that shunts

the SLUG (2R), giving a single junction shunt resistance of R = 3.3 Ω. The V-Φ curves
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Figure 5.4: V-Φ curves of a 6× 6 mm2 die SLUG amplifier when placed in an aluminum
(a) and a brass (b) sample box for different current biases. This measurement occurred
at 200 mK in the ADR.

of Figure 5.3(b) are each taken at different static current biases, where the supercurrent

branch vanishes at Ib = 2I0. We extract the mutual inductance M between the SLUG

input and the SLUG loop from the Φ0 periodicity of the V-Φ curve, giving M = 8.5 pH.

By assuming that L = M and that the junction self capacitance is 120 fF, we calculate

a βL = 0.4 and βC = 0.2.

The SLUG amplifier couples to resonant modes on the chip and in the sample box.

These modes are defined by the LC matching network [Figure 4.7], the box cavity, and

the geometry that defines the integrated circuit. We take two approaches to reduce

their impact on device performance: we push the parasitic modes above the relevant

Josephson frequencies, and we make an effort to decouple and dampen the modes that

we can’t remove. As plotted in Figure 5.4, mounting the SLUG in a brass box dampens

the cavity mode of the sample box; note that the sharp feature at 120 µV [Figure 5.4(a)]

vanishes when the die is placed in a brass box [Figure 5.4(b)]. A brass box will not

shield the SLUG from ambient magnetic fields present in the cryostat; however, reduced
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Figure 5.5: V-Φ curves of two similar SLUG amplifiers without (a) and with (b) an LC
low pass filter at the output. The output filter has a nominal Z0 = 10 Ω and f0 = 8
GHz. The curves are plotted for different current biases. For (a), Ib is 30 µA (blue),
34 µA (red), 38 µA (purple), and 42 µA (green). For (b), Ib is 30 µA (blue), 35 µA
(red), 40 µA (purple), and 44 µA (green). This measurement occurred at 200 mK in the
ADR.

shielding should not affect the performance of the amplifier because of the small SLUG

junction area and superconducting loop. Additionally, we’ve shrunk the die size from

the original 6 × 6 mm2 design to a compact 3 × 3 mm2 and 2 × 2 mm2 chip size, which

pushes the chip modes to larger frequencies. There is also some evidence in simulations

that the coplanar launchers [see orange box in Figure 4.6(a)] resonate, so we’ve reduced

their footprint to an area that accommodates two wire bonds. While these efforts have

improved the performance of the SLUG, the amplifier can’t reach its full potential until

the resonant structure is cleaned up further.

Placing a low pass filter at the output of the SLUG element attenuates the Josephson

oscillations radiating from the SLUG into the chip. The V-Φ curves of two SLUGs

from the same wafer are plotted in Figure 5.5, each with a measured critical current

I0 = 45 µA, shunt resistance R = 7.5 Ω, and mutual inductance M = 6.8 pH. The SLUG

of Figure 5.5(b) has an integrated LC filter at its output with a designed Z0 = 10 Ω and
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Figure 5.6: Frequency dependent gain (in dB) [(a) & (c)], and voltage [(b) & (d)] as
a function of flux bias for SLUGA with a current bias Ib = 70 µA. Plots (c) and (d)
focused on one region of the flux bias parameter space.

f0 = 8 GHz. It is clear from Figures 5.5(a) and (b) that a filter at the output of the

SLUG dramatically cleans up the resonant structure present in the V-Φ curves. While

we have not successfully operated a dual matching network device as an amplifier, we are

confident that an experimental exploration of matching network parameters will yield an

amplifier that performs as well as the devices simulated in Chapter 3.
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5.3 Gain Measurements

The scattering parameters of the cryogenic amplifier chain found in Figure 5.1 are

measured with a vector network analyzer (VNA). VNAs are commonly used to char-

acterize the reflection and transmission coefficients of a multiple port network. In the

context of this thesis, the VNA simply excites the input port and measures the trans-

mitted power at its output port, commonly known as a measurement of |S21|2. We bias

the SLUG using two channels of the battery powered FastBias card, which is a low-noise

dc voltage source that we communicate with via a fiber-optic link.

We first calibrate the insertion loss of the amplification chain without the SLUG using

the calibration line between the two relays. We then perform an automated scan over flux

bias and frequency for different current biases. The output power of the VNA is chosen

so that the SLUG is not saturated2. We average the measured |S21|2 approximately 20

times. The dc voltage at the SLUG output is also monitored. The data shown Figure 5.6

was taken for SLUGA [described in Section 5.2], which has a designed input matching

network of Z0 = 2 Ω and f0 = 11.5 GHz. The two-dimensional scan plotted in Figure 5.6

illustrates that the gain [(a) & (c)] tracks with the shape of the transfer function [(b) &

(d)]. In Figures 5.6(c) and (d), we focus on the performance of the SLUG biased close to

a resonant mode. Notice that the gain is large with a narrow bandwidth at the voltage

plateau, qualitatively similar to the simulations shown in Figure 4.7. At SLUG voltages

greater than 40 µV, the transfer function smooths out, but this comes at the price of

reduced gain.

Also, note that the gain and measured voltage is asymmetric in flux bias, shown in

Figures 5.6(a) and (b). The asymmetry is due to hysteretic steps near the supercurrent

2The high gain (G ≈ 30 dB) bias points at the plateau have a comparatively small saturation power.
We choose the VNA power to avoid saturating the amplifier at bias points away from the plateau.
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Figure 5.7: Frequency dependent gain for SLUGA at an assortment of current and flux
biases.

branch, where the gain and voltage appear asymmetric because we only sweep the flux

bias in the positive direction. Numerical studies [103] show that a resonator tightly

coupled to a SQUID loop is responsible for hysteretic steps in the V-Φ curve. The V-Φ

curve with Ib = 100 µA plotted in Figure 5.3(b) appears hysteretic near the step edge of

the transfer function; however, the quick characterization of the transfer function with

the relatively noisy Wavetek function generator washes out the hysteresis present in the

V-Φ curves captured at a lower current bias. This hysteresis is observed at low Ib when

biasing the SLUG with the low-noise FastBias card.

We typically measure the flux dependence of the gain for a handful of current biases.

In Figure 5.7, we’ve selected a few gain curves taken at different current and flux bias

points to illustrate the bandwidth of SLUGA . We can dynamically tune SLUGA between

5.9 GHz and 6.7 GHz, with gain close to 13 dB and instantaneous bandwidths between 50

and 100 MHz. Our numerical simulations suggest that an SLUGA should have broader

bandwidth and more gain. We suspect that the presence of parasitic resonances coupled
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Figure 5.8: Line cuts of two different SLUG amplifiers operating at 5 GHz (a) and 8
GHz(b).

to the SLUG play a large role in undermining the gain-bandwidth product of the amplifier.

In Figure 5.8, we plot gain line cuts at choice bias points for two different SLUG amplifiers

that operate at 5 and 8 GHz. We believe the standing-wave like structure in the plotted

gain line cuts come from an impedance mismatch at the output of the SLUG.

We rarely measure the 1 dB compression power of the SLUG amplifier. Informally,

the SLUGs described in this section do not show signal compression when operated at

bias points with 15 dB gain and input powers of approximately -115 dBm; unfortunately,

the attenuation of the input microwave chain must be measured to calibrate the power

at the input of the SLUG. This is not a trivial task, as the microwave chain will have

different behavior when cold. One strategy is to set up two identical input paths and

measure the roundtrip insertion loss. This calibration is flawed, as the insertion loss of

a microwave chain depends greatly on the variability of solder joints and commercial

products that were never intended to be cooled down to 40 mK. An example of gain

compression calibrated in this way is plotted in Figure 5.9 for an earlier generation

SLUG that operated at 2.85 GHz, showing a 1 dB compression input power of -95 dBm.
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Figure 5.9: Gain compression for a SLUG amplifier operated at 2.85 GHz.

While we don’t expect the gain compression is any worse for an amplifier like SLUGA,

we haven’t experimentally confirmed this. Additionally, the linearity of the SLUG is

modified by the parasitic resonance. We discuss signal compression further when we use

a SLUG to readout a qubit in Section 7.10.

5.4 Noise Performance

We characterize the noise performance of the SLUG amplifier by measuring the noise

power of the amplification chain with (PR
N ) and without (P S

N) the SLUG. Following the

analysis of Equation 1.18, the measured noise powers have the following form:

PR
N = ~ωB(1/2 +Nsys)GR, (5.1)

P S
N = ~ωB(1/2 +NS

sys)GSGR, (5.2)
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Figure 5.10: Gain (a) and NS
sys (b) for SLUGA as a function of frequency and flux bias

for Ib = 80 µA. We’ve assumed a Nsys = 20 when calculating NS
sys.

where B is the bandwidth of the measurement, Nsys is the added system noise quanta

without the SLUG, GR is the unknown reference gain of the amplification chain without

the SLUG, GS is the measured SLUG gain, and NS
sys is the added system noise quanta

with the SLUG in the circuit. Taking their ratio and solving for NS
sys gives:

NS
sys = (1/2 +Nsys)

P S
N

PR
N

1

GS

− 1/2. (5.3)

We measure PR
N and P S

N with a spectrum analyzer (SA), which captures the absolute

power of the input signal versus frequency for a chosen resolution bandwidth. Once the

noise powers are measured, we record the gain for the same set of SLUG bias parameters.
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Figure 5.11: Gain (a) and NS
sys (b) for SLUGA as a function of frequency for different

current and flux biases. Gain (c) and NS
sys (d) for a SLUG with measured I0 = 72 µA,

R = 4.6 Ω, and M = 7.8 pH, and a designed matching network with Z0 = 2 Ω and
f0 = 14.7 GHz. We’ve assumed a Nsys = 20 when calculating NS

sys for both devices.

NS
sys also depends on Nsys

3, which we have not explicitly measured for our setup. For the

NS
sys data plotted in this chapter, we’ve assumed a conservative Nsys = 20 quanta – this

is equivalent to the HEMT having a noise temperature of 3.5K at 6.5 GHz with 2 dB of

attenuation between the SLUG and the HEMT4. This attenuation could be coming from

the insertion loss of the cryogenic components between the SLUG and the HEMT.

Gain and NS
sys for SLUGA are plotted in Figure 5.10 as a function of frequency

and flux bias for Ib = 80 µA. At this current bias, there is a resonant step edge at

Φb = 139 µA. There are flux bias points above the resonant step edge (Φb < 139 µA)

with gain greater than 15 dB and NS
sys just less than one. On the other side of the

3Nsys can be measured using the hot/cold load method, which presents the input of our amplification
chain with two known noise powers, generated from a resistor with variable temperature on the cold
stage.

4The noise temperature of an attenuator sitting at temperature T with gain G < 1 is T (1/G− 1). In
the quantum limit, where the attenuator is held at a T ≪ ~ω/kb, the equivalent added quanta of noise
for the attenuator is 0.5(1/G− 1).
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resonant step (Φb > 139 µA), the gain is close to 15 dB but the noise performance

is significantly worse. It is unclear if the poor noise performance below the step edge

is due to bad noise matching due to a modified SLUG input impedance, or if there is

something more fundamental about the chaotic dynamics of the junctions interacting

with the parasitic resonance. This divergent behavior of the noise has been observed for

SLUG amplifiers with different matching networks and different device parameters (βC ,

βL). In Figures 5.11 (a) and (b), we plot the gain and NS
sys for SLUGA as a function

of frequency for select current and flux biases. Bias points are chosen for NS
sys < 2

between 6.55 GHz and 6.75 GHz. The instantaneous bandwidth of the plotted gain is

less than the bandwidth reported in Figure 5.7, as we are selecting for bias points with

low NS
sys instead of high bandwidth. In Figures 5.11(c) and (d), we plot the gain and

NS
sys for a SLUG amplifier with different parameters, reported in the Figure’s caption,

where we’ve also assumed a Nsys = 20 when calculating NS
sys. NS

sys appears larger for

the SLUG operating at a larger frequency, but direct comparisons are misleading since

Nsys will change with frequency and between cool downs. An absolute measurement of

the noise temperature will be necessary to fully explore the dependence of NS
sys on SLUG

fabrication parameters.

5.5 Electron Temperature of Thin Film Resistors

As discussed in Section 3.12, Joule heating of the thin film resistors that shunt the

SLUG junctions increases the electron temperature TE, which has a direct impact on the

noise performance of the amplifier. Multiple theoretical studies [90, 104, 105] relate the

power dissipated in the resistor P to TE with the following equation:
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P = ΣΩ
(

T 5
E − T 5

Ph

)

, (5.4)

where Σ is the volume of the resistor, TPh is the phonon temperature of the resistor, and

Σ is a material constant5. Each junction in SLUGA is shunted by two 6.6 Ω resistors

in parallel, each with volume Ω = 3 µm ×9 µm ×30 nm, optimally operated at a bias

point with approximately 50 µV across each resistor, for a dissipated power of P = 380

pW. Falferi et al. [107] measured Σ ≈ 2 × 109 W/(m3K5) for rf sputtered palladium

thin films, which for a phonon temperature equal to the base temperature of the DR

(TPh = 40 mK) results in an electron temperature of TE = 748 mK. For context, using

Equation 1.14, the effective number of 6.5 GHz noise quanta dissipated into a matched

load at T = 748 mK is 2.4 quanta – almost five times the quantum limit. As was shown

in Section 3.5, the optimal noise temperature of the SLUG amplifier is not limited to

the physical temperature of the shunt resistors; however, future generations of the SLUG

will dissipate more power in pursuit of a large gain-bandwidth product. In this section

we experimentally examine the noise temperature of our palladium films.

5.5.1 Experimental Setup

Measuring the electron temperature of a resistor is equivalent to measuring the cur-

rent spectral density of the noise generated by the resistor, SI = 4kbTE/R. We measure

TE as a function of dissipated power by biasing a pair of identical resistors in paral-

lel and measuring the current spectral density of one branch with a pair of correlated

SQUID amplifiers, illustrated by the schematic in Figure 5.12(a). The two resistors are

5Pleikies et al. [106] summarizes the different theoretical treatments and experimental results of Joule
heating.
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Figure 5.12: (a) The circuit schematic of the correlation amplifier measurement of a
resistor’s electron temperature as a function of dissipated power. (b) Picture of the
electroplated copper cooling fin (red outline) anchored to a thin film Pd resistor (blue
outline). The two electroplating leads extending right are severed before the measure-
ment.

evaporated Ti backed Pd thin films with a sputter deposited superconducting aluminum

film comprising the test leads. We measured TE as a function of dissipated power for

two different samples: a bare Pd resistor and a Pd resistor attached to an electroplated

copper cooling fin. The bare resistor sample mimics the measured SLUG amplifier, with

a 3 µm × 9 µm × 30 nm volume, and a resistance of R = 5.55 Ω, measured at 100 mK

in the ADR with a sensitive 4-wire setup6.

Increasing the volume Σ of the resistor is the most obvious approach for reducing

TE at a fixed P . Unfortunately, increasing the footprint and thickness of the resistor

is not a practical solution for most superconducting electronics. The performance of

the SLUG amplifier relies on keeping the parasitic inductance and capacitance of the

6Actually, the two resistors were slightly different from each other, where the resistance to ground
was 5.22 Ω, and the resistor in the measured current branch was 5.88 Ω. R = 5.55 Ω is the average
resistance. We ignore this small discrepancy in the analysis.
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resistor vanishingly small. Several groups have studied the impact of connecting a large,

electrically neutral, two-dimensional volume to the dissipating resistor, which allows the

electrons to diffuse into a larger volume to efficiently interact with the cold lattice phonons

of the metal [89, 106, 108, 107]. These two-dimensional cooling fins become less effective

at high powers. The diffusion length of the hot electrons depend inversely on temperature,

meaning the hot electrons have less volume to thermalize. At high enough powers, the

electrons do not noticeably diffuse into the electrically neutral volume, behaving as if

the cooling fins do not exist. In fact, recent studies have shown almost no difference in

electron temperature at 1 nW of dissipated power when comparing resistors with and

without cooling fins. The ideal SLUG considered in Chapter 3 dissipates over 10 nW of

power into 14 Ω resistors, resulting in a resistor with TE above 1 K. Two-dimensional

cooling fins would do nothing to alleviate this problem. This is why we decided to add

a third dimension for the electron-phonon interaction. By electroplating a thick layer of

copper in the middle of the dissipating element, we provide a larger volume within the

diffusion volume of the hot electrons.

Each resistor of the electroplated sample, pictured in Figure 5.12(b), consists an

evaporated Ti backed Pd resistor with a volume of 35 µm × 10 µm × 35 nm attached

to a 7 µm thick electroplated copper cooling fin with a 100 µm× 100 µm footprint. The

copper fin sits in the middle of the Pd resistor to minimize the distance hot electrons

have to travel before interacting with the cold phonon lattice of the large volume copper

block. The electroplated copper is backed by Pd that is electrically connected to Pd at

the edge of the wafer – this connection is severed before measuring the sample. After

the Pd film is defined, a 7 µm layer of photoresist is patterned, opening up holes to the

Pd patterns to be electroplated. Our colleagues in Syracuse electroplated the samples at

Cornell using a standard acid copper bath, where the wafer was electrically connected
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at the edge after wiping away the photoresist. The plated resistors each had measured

resistance of 4.35 Ω at 100 mK.

The resistor sample was placed in a Nb box with the readout SQUIDs, where the

sample was stuck onto a piece of the thin copper foil with Apiezon vacuum grease, which

was thermally sunk to the cold stage through the copper ground shield of a coax line.

The sample was also thermally sunk to the copper foil with many gold wire bonds. We

were paranoid about heat sinking the sample to ensure that the phonon bath was quickly

thermalized in the presence of large on chip power dissipation. The sample box was

mounted to the cold stage of the ADR, which was fully enclosed in an aluminum box for

additional shielding. The SQUID control lines and resistor bias were heavily filtered at

3 K with a low pass brass filter bank, and at the cold stage with a copper powder filter.

The power dissipated by each resistor on the chip is:

P = (Ib/2)
2R. (5.5)

5.5.2 Electron Temperature Measurement

Steve Sendelbach describes the SQUID correlation amplifier in great detail within

Section 3.2 of his thesis [109], including how to calibrate a flux locked loop measurement,

so we’ll only touch on the fundamentals of the setup. For two resistors R in parallel held

at an electron temperature TE, the measured current spectral density is:

SI = 2kbTE/R + Sf
I , (5.6)
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where Sf
I represents the sum of all the other noise terms, which include the noise gener-

ated by the current bias resistor, the noise from the current supply, and noise from the

SQUID readout electronics. For a TE = 100 mK and a resistor with R = 5.55 Ω, the first

term of Equation 5.6 is approximately 0.5 pA2/Hz. The current is then transformed into

a flux threading the readout washer of each readout SQUID, with a measured mutual in-

ductance of approximately 6.5 nH –meaning the minimum flux noise we must be sensitive

to is 2.2 µΦ0/
√
Hz. The measurement SQUIDs in our setup are operated in a flux locked

loop, described in Section 2.5, which have a noise floor on the order of 20 µΦ0/
√
Hz. In

consequence, Sf
I will dominate the measured SI , washing out the contribution from small

changes in TE .

The SQUID correlation amplifier is a twin set of SQUID amplifiers, each receiving a

copy of SI generated by the resistor sample. The noise generated by the hot resistor will

be correlated, while the noise added by each SQUID amplifier will, in principle, not be

correlated. We Fourier transform each measured voltage trace, V1(t) and V2(t):

F1,2(f) =

∫ ∞

−∞

V1,2(t) exp(−2πift)dt. (5.7)

The correlation function S12 can be computed:

S12 = 〈F∗
1F2〉, (5.8)

where the brackets represent averaging over each recorded time series. From the cali-

bration of the SQUID amplifier, we can convert this correlated voltage to a correlated

current spectral density running through the input coils of the two SQUID amplifiers. As
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Figure 5.13: Correlated current spectral density SI for two different dissipated powers
in the bare resistor sample.

we average more, the correlated spectrum falls until it ultimately saturates. This satu-

ration indicates that the uncorrelated noise contribution from the SQUID amplifiers has

been removed. The variance of the spectrum will continue to decrease with averages. In

Figure 5.13, we plot the correlated spectra of the bare resistor for two different dissipated

powers after averaging 10,000 measurements of the correlated signal. We heavily filter

the current source at room temperature using a low-pass filter with cutoff frequency of

several Hz, which explains the elevated noise at lower frequencies in Figure 5.13. The

output of the flux locked loop is also filtered above 10 kHz to prevent aliasing. We av-

erage the white component of the final spectrum, digitally filtering the correlated 60 Hz

noise present in the spectra.

The correlated amplifier removes a large fraction of Sf
I from Equation 5.6, but not all

of it – there are still contributions from the current bias chain and cross-talk between the
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Figure 5.14: Measured TE as a function of dissipated power for the bare resistor sample
(blue) and the copper cooling fin sample (black). We’ve fit the bare resistor sample
data with Equation 5.4 to extract a Σ = 30 × 109 W/m3K5, assuming Ω = 3 µm ×
9 µm × 30 nm (purple). We’ve also plotted TE for Σ = 2 × 109 W/m3K5, assuming
Ω = 3 µm× 9 µm× 30 nm (red).

two SQUID amplifiers. We first measure the sample at 100 mK when Ib = 0, meaning

TE = 100 mK. With R and TE known, we can back out Sf
I from Equation 5.6, which is

typically on the order of 0.1 pA2/Hz. We then measure SI for different current biases

and extract TE from Equation 5.6, where we’ve assumed that Sf
I does not change with

Ib. The TE of both the bare resistor and the copper cooling fin sample is plotted as

a function of dissipated power in Figure 5.14, where the variance of the average cross

spectral density is plotted as an error bar about the average

We extract a Σ = 30 × 109 W/m3K5 by fitting the bare resistor TE to Equation 5.4,

where we’ve assumed a volume Ω = 3 µm × 9 µm × 30 nm. The measured material

constant Σ is over an order of magnitude larger than previously measured values of
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Σ ≈ 2 × 109 W/m3K5 for Pd resistors [107]. The only apparent difference between our

Pd film and the film in the literature is the deposition method, where our Pd films are

evaporated in a clean system with a base pressure of 10−9 Torr, compared to the rf

sputtered films of Falferi et al. [107]. This unexpected result is great news for the noise

performance of the SLUG amplifier, as the TE of the resistor is only 450 mK, or 3 times

the quantum limit at 6.5 GHz, for the bias parameters of SLUGA described above.

However, we can do better with the electroplated cooling fin, which has a TE ≈ 230

mK for the same dissipated power. Even more encouraging, the electroplated cooling fin

provides a 300 mK improvement over the bare resistor at 10 nW of dissipated power,

something that has not been observed in the literature with a two-dimensional cooling

fin. Notice at high-powers that the electroplated cooling fin has a power dependence with

exponent less than 5. This is direct evidence that the hot electrons are still interacting

with the cold phonons in the electrically neutral cooling fin. A numerical treatment

of the electron-phonon interaction for this three-dimensional geometry, along with an

experimental exploration of parameter space is necessary to further optimize the electro-

plated cooling fins. For example, electroplating literature suggests that we can improve

the copper-palladium barrier by seeding the palladium with a thin layer of evaporated

copper. Additionally, we may be limited by the Kapitza resistance, where the phonons

of the large copper structure are not optimally thermalizing with the substrate at high

powers. In any case, this is a promising topic to explore as the SLUG parameters track

towards larger power dissipation.
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5.6 Conclusions and Outlook

The SLUG is the only microwave linear amplifier being actively researched that can

satisfy the demands of a large-scale, superconducting quantum computer that relies on

a QND dispersive readout. Parametrically driven Josephson junction amplifiers have

reached the limit of their theoretical performance, with the Martinis group maximizing

the gain-bandwidth product for a quantum limited JPA with a reported 20 dB gain, 50

MHz bandwidth, and a 1 dB compression point of about -115 dBm. In this chapter,

we experimentally examined a SLUG amplifier that improved the signal to noise ratio

of the amplifier chain by over 10 dB with an instantaneous bandwidth of 50 MHz. The

SLUG in this chapter underperforms the equivalent numerical SLUG (same βL, βC , L,

C), resulting in a smaller gain-bandwidth product than expected. It is encouraging that

these first iterations of the SLUG amplifier match the performance of the best possible

JPA. We are confident that a systematic examination of the SLUG integrated circuit

and its packaging will result in an amplifier that converges with the expected numerical

performance. Once we have understood the origin of the amplifier parasitics, we can

focus on optimizing the SLUG parameters, pushing to larger critical currents and smaller

junctions. With a focused engineering effort, the SLUG stands to play a large role in

future quantum computing architectures.

A systematic exploration of the parasitic modes present on the chip and in the pack-

aging will improve the performance of the SLUG and help guide future design decisions.

First, we must standardize the chip packaging and minimize impedance mismatches.

The present SLUG box consists of an SMA connector soldered to a PCB diving board

that extends towards a recessed 2 mm chip sitting at the center of a brass cavity. Wire

bonds make the final connection. Each transition and component between the coax line
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and the on-chip coplanar launcher has a complex impedance that differs from 50 Ω, re-

sulting in reflected power and standing waves. Simple modifications, like recessing the

copper boards into the box, will improve matching. Additionally, we need to measure the

scattering parameters of the lumped element matching networks so that we can reliably

match the 50 Ω generator impedance to the impedances of the SLUG input and output.

A calibration can be performed by using a series of on-chip LC resonators capacitively

coupled to a common feedline. A measurement of the transmitted power allows us to

extract the inductance and capacitance of each resonator. Once we are able to reliably

design the matching networks and have standardized the rest of the SLUG fabrication

process, we can examine the gain and noise performance of the SLUG as a function of

input matching network. This brute force method will deliver the best possible amplifier

while also shedding light on the actual scattering parameters of the bare SLUG element.

A stable high critical current junction process is also key for a reliable exploration of pa-

rameter space. We must develop a trilayer junction process [see discussion in Section 4.3]

and accurately control for the film stress and SiOx roughness in order to standardize the

SLUG fabrication process.

There are many experiments that we would like to perform in the short term with the

SLUG amplifier. The superconducting qubit community is interested in a non-reciprocal

amplifier that does not require an isolator between the qubit and the amplifier. There are

plans to measure the forward and reverse scattering parameters of the SLUG amplifier,

along with the reflection coefficients. Such a measurement would involve de-embedding

the scattering parameters from a cryogenic measurement using a pair of coax relays,

directional couplers, and HEMTs [110]. Additionally, we’d like to cascade two SLUG

amplifiers, allowing us to improve the gain-bandwidth product and the system noise of

the amplification chain. This could initially be done with two chips using four separate
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dc bias lines. However, this could eventually be moved onto one chip using a single flux

and current bias.



131

Chapter 6

Theory of Superconducting Qubit

Readout

In the previous chapters we focused on the classical dynamics of Josephson junction

based integrated circuits, building a numerical framework for optimizing the SLUG am-

plifier for linear low noise amplification of classical signals. In this chapter we discuss

the quantum behavior of superconducting circuits, with a derivation of the LC resonator

Hamiltonian in Section 6.1 followed by the transmon qubit in Section 6.2. In Section 6.3,

we calculate the expected signal-to-noise ratio of an amplification chain when measuring

the state of the qubit.

6.1 Quantization of a Superconducting Circuit

Summarized conceptually by Devoret [111] and rigorously formalized by Bukard et.

al [112], the quantum behavior of a lumped element circuit can be described by deriving
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the classical Hamiltonian of the circuit, followed by replacing the classical variables with

their corresponding quantum operators.

Because we are interested in circuits containing Josephson junctions, it is helpful to

use the macroscopic phase difference δ̂ across a circuit element as the position coordinate

within the equations of motion. In accordance with BCS theory, the number of Cooper

pairs N̂ on an electrode is conjugate to the δ̂, such that [56]:

[δ̂, N̂ ] = i. (6.1)

In circuits without junctions, it is more intuitive to work with magnetic flux Φ̂ and

charge Q̂ as the conjugate variables. We can replace δ̂ with the Φ̂ generated by the

non-linear inductance of a junction by examining the voltage across the junction [Equa-

tion 2.5], where Φ̇ = VJ = ~

2e
δ̇, and it follows that Φ̂ = ~

2e
δ̂. The total charge on an

electrode is just Q = 2eN , giving Equation 6.1 the following form:

[Φ̂, Q̂] = i~. (6.2)

The lossless parallel LC resonator, shown in Figure 6.1(a), is a trivial illustration of

a quantized electrical circuit. We define the classical magnetic flux generated by any

circuit element as:
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Figure 6.1: (a) Circuit schematic of LC resonator, where L is the inductance and C is the
capacitance. Q is the charge on the capacitor, and I is the counterclockwise circulating
current. (b) Potential energy of the LC resonator, with magnetic flux Φ as the position
coordinate. The quantized energy levels of the harmonic system are equally separated.

Φ(t) =

∫ t

−∞

V (t′)dt′, (6.3)

V (t) = Φ̇(t), (6.4)

where V(t) is assumed to be zero at t = −∞. It follows that the total energy in the

capacitor is:

UC =

∫ t

−∞

V (t′)I(t′)dt′ =

∫ Q

0

Q′

C
dQ′ =

Q2

2C
=

CV 2

2
=

CΦ̇2

2
, (6.5)

where V = QC. The magnetic energy in the inductor is:
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UL =

∫ t

−∞

V (t′)I(t′)dt′ =

∫ I

0

LI ′dI ′ =
LI2

2
=

Φ2

2L
, (6.6)

where V = Lİ. With the resonator energy depending on Φ, we can write down the

circuit Lagrangian L and conjugate momentum p, where UC and UL are the kinetic and

potential energy of the circuit, respectively:

L = UC − UL =
CΦ̇2

2
− Φ2

2L
, (6.7)

p =
∂L
∂Φ̇

= CΦ̇ = Q, (6.8)

It is now straightforward to write down the Hamiltonian of the resonator:

H = ẋp− L =
Q2

2C
+

Φ2

2L
=

p2

2m
+

1

2
mω2

0x
2. (6.9)

Equation 6.9 suggestively maps the LC resonator to a Hamiltonian that describes a ficti-

tious particle of mass m = C moving in a harmonic potential with Φ → x and a plasma

frequency ω0 = 1/
√
LC. Since the conjugate variables Q and Φ satisfy Equation 6.2, the

quantized resonator circuit takes the following familiar form:

Ĥ = ~ω0(â
†â+

1

2
), (6.10)
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with the ladder operators â and â† defined as:

â =
1√
2~Z

(Φ̂ + iZQ̂), (6.11a)

â† =
1√
2~Z

(Φ̂− iZQ̂), (6.11b)

where the characteristic impedance Z =
√

L/C. As illustrated in Figure 6.1(b), the

quantized LC resonator contains an infinite number of uniformly spaced energy levels,

separated by ~ω0.

6.2 Transmon

As discussed in Section 1.1, a qubit is an object whose state can be placed in an

arbitrary superposition of two discrete eigenstates, labeled |0〉 and |1〉 . Quantized su-

perconducting circuits, like atoms, are defined by an infinite-dimensional Hilbert space;

however, the computational manifold of a qubit occupies only two dimensions of Hilbert

space. The quantized harmonic oscillator discussed above is defined by an infinite num-

ber of eigenstates with equally spaced energy levels. It is impossible to independently

address two eigenstates of the circuit. For example, if we drive a two-level system at a

frequency equal to the energy splitting f10, the qubit will cyclically absorb and emit pho-

tons, causing the state to oscillate between the |0〉 and |1〉 state. However, the harmonic

oscillator will continue to absorb photons as the state climbs the ladder.

Superconducting qubits rely on the non-linear inductance of the Josephson junction

[Equation 2.6] to modify the potential of the harmonic oscillator, resulting in a discrete,

anharmonic spectra with f10 > f21. There are many different flavors of superconducting
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Figure 6.2: Schematic of the Cooper Pair Box, with gate voltage VG, gate capacitance
CG, a Josephson junction with critical current I0 and CB is total capacitance shunting
the junction.

qubits, separated by circuit topology and component values1. In this thesis we measure

a transmon qubit, first discussed by the Yale group [31]. The transmon qubit is a Cooper

pair box (CPB) capacitively coupled to a resonator. The CPB, schematically shown in

Figure 6.2, consists of a Josephson junction with critical current I0, and a total shunt

capacitance CB. The junction is connected to a voltage source VG through a gate capac-

itor CG. From the Josephson relations in Equations 2.4 and 2.5, the energy of a junction

UJ with critical current I0 is:

UJ =

∫ t

0

IJ(t
′)VJ(t

′)dt′ =
I0Φ0

2π

∫ δ

0

sin(δ′)dδ′ = EJ [1− cos(δ)] , (6.12)

where the Josephson energy EJ = I0Φ0

2π
. The energy stored in the capacitance UC is:

1For a taxonomy of the superconducting qubit kingdom, read the review by Devoret et al. [23].
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UC =
1

2
CG (VG + VJ)

2 +
1

2
V 2
J

=
1

2
CG

(

VG +
~

2e
δ̇

)2

+
1

2
CB

(

~

2e

)2

δ̇2. (6.13)

Ignoring the constant terms, it follows that the Lagrangian L is:

L = UC − UL =
1

2
CG

(

VG +
~

2e
δ̇

)2

+
1

2
CB

(

~

2e

)2

δ̇2 + EJ cos(δ)

=
1

2

[

(2enG)
2

CG
+ 2nG~δ̇ + CG

(

~

2e

)2

δ̇2

]

+
1

2
CB

(

~

2e

)2

δ̇2 + EJ cos(δ),

(6.14)

where VG = 2enG/CG. The conjugate momentum is:

p =
∂L
∂δ̇

= nG~+ CΣ

(

~

2e

)2

δ̇

≡ n~, (6.15)

where CΣ = CB+CG, and where we’ve defined n as the conjugate momentum, physically

interpreted as the number of Cooper pairs on the junction. The Hamiltonian of the

system is written as:
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H = p− L =
1

2

(

~

2e

)2

δ̇2CΣ −EJ cos(δ)

= 4EC (n− nG)
2 − EJ cos(δ), (6.16)

where EC = e2/2CΣ is the energy required to bring one electron onto the junction.

Since the phase across the junction δ and the number of Cooper pairs n are conjugate

coordinates [Equation 6.1], we can rewrite the Hamiltonian of the CPB with quantum

operators δ̂, n̂:

Ĥ = 4EC (n̂− nG)
2 −EJ cos(δ̂). (6.17)

We can numerically solve the CPB Hamiltonian to illustrate the spectra of the qubit

for different EJ/EC ratios. A numerical solution is obtained by rewriting Equation 6.17

in the charge basis, truncating the infinite Hilbert space to a manageable subspace of

dimension 2N:

Ĥ = 4EC

N
∑

j=−N

(j − nG)
2 |j〉〈j| − EJ

2

N−1
∑

j=−N

(|j + 1〉〈j|+ |j〉〈j + 1|) , (6.18)

where the second term physically represents the tunneling of Cooper pairs across the

junction. With the Hamiltonian in this form, it is trivial to numerically solve for the

eigenvalues and eigenvectors of the resultant 2N × 2N matrix. The first four energy

splittings Ei+1,i = Ei+1 − Ei are plotted in Figure 6.3(a) as a function of gate charge
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Figure 6.3: Column (a) plots the spectra of the first four energy spitting of the CPB,
normalized to E10. The Hamiltonian is solved for three different energy ratios. Column
(b) shows the eigenfunctions for the |0〉 (blue), |1〉 (red), and |2〉 (green) at nG = 0.
Column (c) has numerical solutions of four matrix elements |〈i|n̂|j〉| as a function of
gate charge nG.

nG. The energy ratio EJ/EC determines the anharmonicity and the charge dispersion

of the qubit. A large anharmonicity (E21 − E10) is necessary to remain in the two-

state computational manifold during qubit operations. Increasing EJ/EC reduces the

anharmonicity of the qubit. Charge dispersion describes how the energy of the qubit

varies with gate-voltage fluctuations. As the energy ratio increases, the effects of charge

dispersion vanishes. Koch et al. [31] showed that charge dispersion reduces exponentially

in EJ/EC , while anharmonicity decreases algebraically, leaving room for compromise.

The transmon is a CPB with EJ/EC ≫ 1, eliminating the need for electrostatic gates
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for tuning the qubit to a charge insensitive sweet spot. It can be shown that for large

EJ/EC the first two energies of the qubit have the following form [31]:

E10 =
√

8EJEC − EC , (6.19)

E21 =
√

8EJEC − 2EC , (6.20)

giving an anharmonicity of E21 − E10 = EC . The transmon measured in the following

Chapter is fabricated with two junctions embedded in a low-inductance superconducting

loop. As described by Equation 2.21, the two junctions act as a single junction with a

flux adjustable critical current. This arrangement gives us the ability to tune the spectra

of the qubit using a simple dc bias.

The transmon is capacitively coupled to the voltage antinode of a transmission line

resonator. Koch et al. [31] derived an expression for the dipole coupling constant gij of

the Jaynes-Cummings hamiltonian [Equation 1.5]:

~gij = 2eβV 0
rms〈i|n̂|j〉, (6.21)

where V 0
rms =

√

~ωr/2Cr is the RMS zero-point voltage of the resonator, Cr is the total

capacitance of the resonator, and β = Cg/CΣ is the ratio of the gate capacitance to the

total capacitance. We compute several matrix elements 〈i|n̂|j〉 in Figure 6.3(c). The

neighboring coupling constants are well approximated by:
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Figure 6.4: Schematic of the readout resonator circuit, configured as a λ/4 transmission
line resonator with bare resonance fλ/4 and characteristic impedance Z0. The resonator
is capacitively coupled to a R0 feedline driven by a generator VG.

~gi+1,i ≈ 2eβV 0
rms

√

i+ 1

2

(

EJ

8EC

)1/4

=
√
i+ 1g10 (6.22)

Additionally, as EJ/EC → ∞ the non-neighboring matrix elements vanish, such that:

gij = 0 for |i− j| > 1. (6.23)

Calculating the g-factors is important for calculating the dispersive and Stark shift using

the analysis of Section A.3.
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6.3 Qubit Readout

As discussed in Section 1.5, we probe the state of the qubit by measuring the dressed

state of a cavity coupled to the qubit. In the dispersive limit, the resonance of the cavity

depends on the state of the qubit [see Equation A.20]. We interrogate the state of the

cavity-qubit system with a single microwave tone, at a frequency chosen to maximize

the distinguishability of the |0〉 and |1〉 state. For the qubit measured in this thesis, the

readout resonator is a λ/4 coplanar transmission line resonator capacitively coupled to a

50 Ω feedline, as illustrated in the schematic of Figure 6.4. In this section, we investigate

the expected signal-to-noise ratio (SNR) of a dispersive measurement of the qubit.

The microwave generator probes the state of the cavity at angular frequency ω and

amplitude VG. The complex impedance of the qubit-cavity system modifies the amplitude

and phase of the probe signal, giving the output voltage VO(t) the following form:

VO(t) = A sin(ωt+ θ)

= I cos(ωt)−Q sin(ωt)

= Real[(I + iQ) exp(iωt)], (6.24)

where, in the steady state, the quadrature components I and Q are constant in time and

are related to the phase and magnitude in the following way:

A =
√

I2 +Q2, (6.25)

θ = arctan(I/Q). (6.26)
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In a standard heterodyne measurement, we have access to both the quadratures of VO(t),

allowing us to back out how the the cavity-qubit system modifies the probe signal.

6.3.1 Quarter Wave Resonator

Following along with Mazin [113], from Equation 3.36, the impedance of a lossless

quarter-wave transmission line with a short-circuited load takes the form:

ZT = Z0 tanh (iβℓ)

= Z0 tanh

(

i
πω

2ωλ/4

)

, (6.27)

where ωλ/4 is the bare angular resonance of the transmission line. For |ω − ωλ/4| ≪ 1,

Equation 6.27 is well approximated by:

ZT ≈ −i2Z0

πδx
, (6.28)

where δx = (ω − ωλ/4)/ωλ/4. The impedance of the coupling capacitor C in series with

ZT is:

Z =
1

iωC
− i2Z0

πδx

≈ iR0Qcδx
′, (6.29)
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where we’ve assumed that the capacitor does not significantly modify the bare resonance

[(ω0 − ωλ/4)/ωλ/4 ≪ 1], giving the following forms to Qc, the modified resonance ω0, and

δx′:

Qc =
π

2Z0R0ω2
0C

2
, (6.30)

ω0 ≈ ωλ/4

(

1−
√

2Z0

πR0Qc

)

, (6.31)

δx′ =
ω − ω0

ω0

. (6.32)

The quality factor is a measure of how quickly the resonator loses energy, which is defined

by Q = ω0τ1/e, where ω0 is the resonance of the system and τ1/e is the exponential time

constant of the energy stored in the resonator. A fraction of the stored energy is lost to

the substrate and the oxide at the metal substrate interface (described by the intrinsic

quality factor Qi). By design, the energy will also escape through the capacitor, defined

by the coupling quality factor Qc. The loss channels add in parallel, for a loaded QL of:

1/QL = 1/Qc + 1/Qi. (6.33)

We can treat the resonator as lossless in the limit of Qi ≫ Qc.The coupling quality factor

Qc is calculated with the following argument. The λ/4 transmission line has a voltage

profile that oscillates in time with the following dependence:
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Vℓ(t, x) = VA sin(ωt) cos(2πx/λ0), (6.34)

where x = 0 is the capacitor side of the resonator, 0 ≤ x ≤ λ0/4, and λ0 = vph/fλ/4. The

energy stored in the capacitance of the resonator averaged over one clock cycle and the

length of the line is:

EC =
1

2
Cℓ

4

λ0

∫ λ0/4

0

dx
1

T

∫ T

0

dt|VA|2 sin2(2πt/T ) cos2(2πx/λ0)

=
1

8
Cℓ|VA|2, (6.35)

where the total capacitance Cℓ of the line is [87]:

Cℓ =
π

2ωλ/4Z0
. (6.36)

Half of the energy in the resonator is stored in the electric field of the capacitor, with

the other half stored in the magnetic field of the inductance, for a total average energy:

E = 2EC =
1

4
Cℓ|VA|2 =

π

8ωλ/4Z0
|VA|2. (6.37)

The average power leaking out of the resonator is:
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P = |I|2R0/4

=

∣

∣

∣

∣

∣

VA

1
iωλ/4C

+R0/2

∣

∣

∣

∣

∣

2

R0/4

≈ |VA|2(ωλ/4C)2R0/4. (6.38)

The decay time τ1/e is just:

τ1/e = E/P =
π

2ωλ/4Z0R0(ωλ/4C)2
. (6.39)

Finally, we write down Qc:

Qc = ωλ/4τ1/e =
π

2Z0R0ω2
λ/4C

2

≈ π

2Z0R0ω2
0C

2
. (6.40)

From Equation 6.29, the forward voltage transfer function of the resonator S21 is:

S21 = 2VO/VG =
2

2 +R0/Z
=

i2Qcδx
′

i2Qcδx′ + 1
. (6.41)

Figures 6.5(a) and (b) show the transmitted power and phase for a resonator with Qc =

5000. On resonance, the transmitted power is at a minimum, while the phase inflects

about 0. The quadrature components of the complex signal trajectory are plotted in
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Figure 6.5(c) for different frequencies. For a heterodyne measurement, we capture the

quadrature components of the output voltage VO:

VO = S21VG/2. (6.42)

6.3.2 Cavity Photon Population

The expected voltage difference between the two resonator states depends on how

hard the caviy-qubit system is driven. The dispersive form of the Jaynes-Cummings

hamiltonian breaks down as the number of photons in the cavity approaches ncrit [Equa-

tion A.16]. We want a functional form of VO for a known average cavity photon popula-

tion. Using Equation 6.37, the total average energy E in the resonator is related to the

average photon number n̄ as follows:

n̄ =
E

~ω
=

π

8ω0Z0~ω
|VA|2. (6.43)

From Equations 6.42, 6.29, and 6.28, the voltage across the transmission line VA depends

on VG as:

VA = VO
ZT

Z
=

S21VGZT

2Z

=
−iVG2Z0

πR0(δx′ −
√

2Z0

πR0Qc
)(1 + i2Qcδx′)

. (6.44)
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We are interested in frequencies about the linewidth of the resonator κ = ω0/Qc, such

that δx′ ≪
√

2Z0/(πR0Qc), giving:

VA ≈ iVG

√

2Z0Qc

πR0

(

1

1 + i2Qcδx′

)

. (6.45)

Equation 6.43 becomes:

n̄ =
V 2
GQc

4R0ω0ω~

(

1

1 + (2Qcδx′)2

)

. (6.46)

6.3.3 Steady State Signal To Noise Ratio

We define the signal-to-noise ratio (SNR) as the voltage difference between the two

states |Vsig| divided by the sum of the standard deviations that define the voltage distri-

bution of each state σ|0〉 + σ|1〉:

SNR =
|Vsig|

σ|0〉 + σ|1〉

. (6.47)

As illustrated in Figure 6.6(a), the two dressed cavity states occupy a different point on

the complex plane of the measured output voltage VO, which is given the following form

using Equation 6.42:
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VO =
VG(∆ω/κ)(2∆ω/κ+ i)

1 + (2∆ω/κ)2

= |VO|(cos θ + i sin θ), (6.48)

where we’ve replaced Qc = ω0/κ. The magnitude |VO| and phase θ are given by:

|VO| = |VG|
∣

∣

∣

∣

∆ω

κ

∣

∣

∣

∣

(

1 + (2∆ω/κ)2
)−1/2

, (6.49)

tan θ =
κ

2∆ω
, (6.50)

where ∆ω = ω−ω0. The dressed cavity state modifies ω0. For the |0〉 state, ∆ω becomes:

∆ω → ∆ω|0〉 = ω − ω
|0〉
0 , (6.51)

and for the |1〉 state:

∆ω → ∆ω|1〉 = ω − ω
|1〉
0

= ω − (ω
|0〉
0 + 2χ)

= ∆ω|0〉 − 2χ, (6.52)

where 2χ is the dispersive shift defined by Equation A.22. The measured voltage differ-

ence between the two states is |Vsig|:
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|Vsig| =
√

(|V |0〉
O | sin θ|0〉 − |V |1〉

O | sin θ|1〉)2 + (|V |0〉
O | cos θ|0〉 − |V |1〉

O | cos θ|1〉)2

=

√

|V |0〉
O |2 + |V |1〉

O |2 − 2|V |1〉
O ||V |0〉

O | cos(θ|0〉 − θ|1〉), (6.53)

where the |0〉 (|1〉) superscript means we’ve plugged Equation 6.51 (6.52) into Equa-

tion 6.50 for calculating |Vsig| and θ. We’ve also defined |VG| by the number of photons

in the resonator when the qubit is in the |0〉 state, from Equation 6.46:

|VG|2 = 4~ωκR0n̄[1 + (2∆ω|0〉/κ)2]. (6.54)

Using Equation 1.21, the standard deviation of the measured voltage distribution σ is

equal to the RMS voltage of the system noise of the amplification chain:

σ = VRMS =
√

R0~ω(1/2 + nsys)B, (6.55)

where the noise quanta added by the system nsys is defined by Equation 1.20, and B is

the equivalent noise bandwidth (ENB) of our measurement chain, which we assume to be

B = 1/τm for a simple rectangular window function of duration τm. The SNR of a qubit

measurement as a function of detuning ∆ω|0〉 and cavity-qubit detuning ∆0 = ω10 − ω|0〉

is plotted in Figure 6.6(b). For this illustration, we have chosen n̄ = ncrit = g210/(4∆
2
0),

ω|0〉/2π = 6.6 GHz, Qc = 5000, nsys = 1, R0 = 50 Ω, g10/2π = 33 MHz, and τm = 600 ns.

The dispersive shift of the cavity 2χ as a function of ∆0 is calculated with the analysis in
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Section A.3 and plotted in Figure 6.7(b), where we’ve assumed the following reasonable

anharmonicities: α1 = ω21 − ω10 = −230 MHz and α2 = ω23 − ω21 = −250 MHz.

Notice that the calculated SNR is largest when probing at a frequency halfway be-

tween the cavity states (∆ω|0〉 = χ). Qualitatively, the cavity must be driven harder

(a larger |VG|) in order to maintain a fixed number of photons in a cavity when driven

off resonance. Also, note that for a fixed κ, there exists a ∆0 where the SNR is at

a maximum. As the qubit is detuned further from the cavity, the dispersive shift 2χ

gets smaller, which results in a lower SNR for a fixed number of photons in the cavity.

However, ncrit also increases with larger detuning, which means the cavity can be driven

harder. A weakly anharmonic system modifies χ, and, in consequence, the SNR starts

to decrease below a critical ∆0.

6.3.4 SNR With Cavity Ringup

The above analysis solves the output voltage in the steady state. In practice, one

must consider the dynamics of the cavity and the amount of time it takes to load the

cavity with photons. In the above example, the cavity has a characteristic time of

τc = 2π/κ = 2πQc/ω
|0〉 = 758 ns. By solving for VO as a function of time, we can

calculate a more accurate measurement SNR. For (ω − ω0)/ω0 ≪ 1, we rewrite the

impedance of the series capacitor-λ/4 resonator of Equation 6.29 as an inductor Lr in

series with a capacitor Cr:
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Lr =
R0Qc

2ω0
, (6.56)

Cr =
2

ω0R0Qc
, (6.57)

ω0 =
1√
LrCr

, (6.58)

where ω0 is the modified resonance defined by Equation 6.32. It is straightforward to

derive an equation of motion for the current flowing through the series LC resonator ILC :

ÏLC +
ω0

Qc
İLC + ω2

0ILC =
VGωω0

R0Qc
cos(ωt), (6.59)

where we’ve assumed the generator has the functional form VG sin(ωt). We take a Laplace

transform of Equation 6.59 and solve for L{ILC(t)}(s):

L{ILC(t)}(s) =
VGω

R0Qcω0

[

s

s2 + ω2

]

[

(

s

ω0

)2

+

(

s

ω0Qc

)

+ 1

]−1

, (6.60)

where s is a complex number, and we’ve assumed İLC(t = 0) = ILC(t = 0) = 0. We

numerically perform an inverse Laplace transformation of Equation 6.60 to solve for

ILC(t). The output voltage is given by:

VO(t) =
|VG|
2

[sin(ωt)− R0ILC(t)] , (6.61)
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where |VG| sets the number of photons in the cavity when the qubit is in the |0〉 state,

as defined by Equation 6.54. For direct comparison, we consider the same cavity-qubit

system as the previous section, with ω|0〉 = 6.6 GHz, Qc = 5000, nsys = 1, R0 = 50 Ω,

g10/2π = 33 MHz, and the same dispersive shift plotted in Figure 6.7(b). Note that the

dispersive shift does change with the number of photons in the resonator, a fact ignored

in this analysis. In Figure 6.8, we plot the envelope of VO(t) when the qubit is in the

|0〉 and |1〉 state, for ∆0 = −600 MHz and ∆ω|0〉 = 0. At τm = 0 the output voltage

VO(t) = VG/2, as expected. After roughly τm = 1.5 µs, the amplitudes of each state

dependent VO(t) reach their steady state solution.

The amplitude |VO| and phase θ are calculated with a Fourier transform of VO(t)

over an integration time τm. The SNR is calculated from Equations 6.53 and 6.55. In

Figure 6.9(a), we plot the SNR of the cavity-qubit readout for τm = 600 ns. Compared

to the steady state solution of Figure 6.6(b), the SNR is noticeably reduced, and the

maximum SNR occurs when the qubit is tuned several hundred MHz closer to the reso-

nance of the cavity. A comparison between the steady state and modified SNR is plotted

in Figure 6.9(b) as a function of τm. For long times both solutions converge with a
√
τm

dependence. However, the SNR and in consequence the measurement fidelity is limited

by the ring-up time of the cavity. A larger κ is necessary for a fast measurement, but

to maximize SNR the dispersive shift 2χ must also increase with κ2. Unfortunately,

an increase in χ and κ cause the qubit to relax via the Purcell effect, with the Purcell

relaxation rate γpurc [31, 33]:

2Gambetta et al.[114] argue that the maximum SNR occurs at κ = 2χ, but their analysis does not
take the weak anharmonicity of the qubit and the ring-up of the cavity into account. As shown in the
last two sections of this thesis, designing for a maximum SNR depends on the a web of qubit-cavity
parameters. However, keeping κ close to 2χ is a good rule of thumb.
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γpurc = κg2/∆2 ≈ κχ2/∆. (6.62)

The eigenstates of the Jaynes-Cummings Hamiltonian have a small photonic compo-

nent leaking out of the cavity, resulting in qubit relaxation. However, there are design

strategies that provide Purcell protection of the qubit [115].

6.3.5 Readout Fidelity

At the end of the day, we are interested in maximizing the readout fidelity of the

qubit. The fidelity is determined by preparing and measuring the qubit in both the |0〉

and |1〉 state. We take a large number of measurements, allowing us to estimate the

conditional probability of measuring the qubit in the |0〉 state when prepared in the |1〉

state P (|0〉||1〉), and the initialization error where the qubit was left in its |0〉 state but

measured as a |1〉 state P (|1〉||0〉), giving the following definition for readout fidelity:

F = 1− P (|1〉||0〉)− P (|0〉||1〉). (6.63)

F depends on how well the qubit is initialized, the fidelity of the qubit gates, the relaxation

rate between the |1〉 and the |0〉 state, and the SNR of the amplification chain. Gambetta

et al. [116] studied how the readout fidelity depends on SNR, taking into account qubit

relaxation and different demodulation schemes3. For the simple rectangular window

considered above, one can approximate the fidelity with the following expression [116]:

3To draw parallels with [116], their rsn = T1B(SNR)2.
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F ≈ exp

(

− τm
2T1

)

erf(SNR/
√
2), (6.64)

where [116] assumes perfect qubit initialization, a QND measurement, and no gate errors.

The calculated SNR of Figure 6.9 with a T1 = 10 µs is plugged into Equation 6.64, giving

the estimated fidelity as a function of ∆ω|0〉 and cavity-qubit detuning ∆0. As plotted in

Figure 6.10, an amplification chain that adds nsys = 1 can achieve a readout fidelity of

0.98 with a measurement time of 600 ns. The fidelity can easily exceed 0.99 for the same

nsys and at shorter measurement times by increasing T1 and with the design changes

discussed at the end of the previous section.
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the magnitude of the voltage difference between the two states. The measured voltage has
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defines the noise on the signal. (b) The steady state SNR as a function of detuning from
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ns. The calculated dispersive shift χ is plotted in Figure 6.7(b).
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Chapter 7

Qubit Measurements

In this chapter, we discuss our efforts to read out a qubit with a SLUG amplifier.

This chapter also serves as a guide for how to characterize an Xmon qubit for the first

time. In Section 7.1, we give an overview of the measured Xmon qubit. In Section 7.2,

we go over the experimental setup for qubit readout, highlighting the role of the room

temperature electronics. We probe the state of the resonator and the qubit in Sections 7.3

and 7.4, respectively. In Sections 7.5 and 7.6, we calibrate a simple qubit gate and

explore the coherence of the qubit. The number of photons in the cavity as a function

of cavity drive power is measured with the Stark shift in Section 7.7. In Section 7.8,

we discuss the heterodyne measurement, and in Sections 7.9 and 7.10 we determine the

measurement fidelity of the qubit when read out without and with the SLUG, respectively.

In Section 7.11, we take a step back and discuss some simple adjustments that can be

made to improve the measurement fidelity, and we outline some future experiments that

we would like to carry out..
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7.1 UCSB Xmon

The Martinis group at UCSB was kind enough to lend us an ‘Xmon’ qubit’ [32] – a

design based on the planar transmon that minimizes radiative loss and reduces coupling to

material-related defects on the chip. The design of the Xmon, pictured in Figure 7.1, was

motivated by recent advances with high quality-factor coplanar resonators [27]. Similar to

the transmon, the heart of the Xmon is a frequency tunable aluminum qubit comprised

of two submicron Josephson junctions in a low-inductance loop; this SQUID loop is

inductively coupled to an external bias line with a designed mutual inductance M = 2.2

pH. The energy scales of the qubit were chosen to minimize charge dispersion without

sacrificing nonlinearity, with an EJ/EC ≈ 95 and an anharmonicity of 230 MHz.

The qubit is embedded in an uninterrupted groundplane, with four branches arranged

in an X-pattern (hence the name); the coplanar capacitors suppress parasitic slotline

modes at the permitter of the resonators and control lines. One branch of the ‘X’ in-

ductively couples to the qubit bias, while the remaining three ports capacitively couple

to the qubit drive line, the readout resonator, and a quantum-bus used to mediate inter-

actions with other qubits. The 50 Ω readout resonator is a short-circuited λ/4 coplanar

waveguide with the voltage anti-node of the standing wave located at the same end as

the qubit. The resonator is capacitively coupled to a 50 Ω feedline. The Martinis group

have demonstrated energy relaxation times up to T1 = 44 µs with devices from the same

wafer as the device measured in this chapter. For a complete description of the Xmon

qubit, please read Barends et al. [32].
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Figure 7.1: Picture of the UCSB-Martinis Xmon, stolen directly from Barends et al. [32].
Picture of the full Xmon circuit (a) the SQUID loop (b) with Z-control line. (c) The
equivalent electrical schematic of the qubit island and its four-port coupler.

7.2 Experimental Setup

7.2.1 DR Wiring

We measure the Xmon in the DR at 40 mK using a similar cryogenic setup as the

one used to measure the SLUG, described in Section 5.1.2. Illustrated in Figure 7.2,

the cold stage of the DR is wired with a third coax relay; this gives us the ability to

switch the Xmon in and out of the amplification chain. As discussed in the previous

section, the Xmon chip has three input ports: a microwave line that probes the read-out

resonator (ROin), a microwave line that performs qubit rotations (QDrive), and a flux

bias line (Bias). A custom bias-T ties together a heavily filtered dc bias line (Xmon Bias)
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for static control of the Xmon’s operating point, and a microwave line that allows us to

perform precise Z-rotations by momentarily changing the bias point of the qubit. Each

channel is appropriately attenuated and filtered at 40 mK before entering the qubit box.

Quasiparticle generation from stray infrared light [117] and ambient magnetic fields on

the order of milligauss [27] are major sources of decoherence in superconducting qubits.

We minimize the magnetic field at the surface of the qubit by placing the sample box

in a high magnetic permeability Cryoperm shield. Additionally, all the screws and coax

connectors within the shield were made with non-magnetic brass. The sample is enclosed

in a light-tight box to prevent infrared radiation from reaching the qubit. This is accom-

plished by enclosing the sample stage in a large 40 mK copper can painted with a “black

coating” that absorbs stray light. The “black coating” consists of a mixture of silica pow-

der, fine carbon powder, and 1 mm SiC grains in stycast epoxy, having an absorptivity

of 90% over a wide angle in the 0.3-2.5 THz range [118]. The same coating is applied to

the inside of the Cryoperm shield for an additional stage of absorption. An additional

isolator sits between the readout port of the Xmon and the coax relay, preventing any

noise at the input of the SLUG amplifier from reaching the qubit. The rest of the wiring

is identical to the SLUG setup already described.

The qubit is mounted in an aluminum box that embraces the same design philosophy

as the SLUG box, pictured in Figure 5.2(a). The superconducting aluminum provides

additional shielding, and a thin coat of black stycast epoxy is painted on the inside of the

lid for additional protection against stray infrared radiation. The qubit chip, pictured in

Figure 7.3, contains three qubits (Q0, Q1, Q2) coupled to three readout resonators (R0

≈ 6.4 GHz, R1≈ 6.5 GHz, R2≈ 6.6 GHz). There are two additional check resonators

(R3, R4) that are not coupled to a qubit. Unlike the Xmon described in the previous

section, no quantum bus exists on this chip.
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Figure 7.3: Picture of the Xmon chip we are measuring (photo taken by Julian Kelley,
UCSB). We measure Q2 in this chapter.

7.2.2 Qubit Control Electronics

As diagramed in Figure 7.4, the microwave control and readout pulses are generated

and shaped using of off-the-shelf microwave components along with custom FPGA-based

signal generators1. Each FPGA board controls two 14-bit digital-to-analog converters

(DACs) with nanosecond resolution, allowing us to synthesize waveforms of frequencies

up to 500 MHz with amplitudes up to 1 V. The differential outputs of each DAC are

filtered and then fed into a differential amplifier. The DAC filters are chosen to give

the pulse shapes a Gaussian step edge, which prevents the generation of high frequency

spectral components that can reduce qubit gate fidelity.

1Read Marcus Ansmann’s thesis for a detailed overview of the custom electronics and the control
software [119].
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Figure 7.4: Room temperature qubit control electronics.

The I/Q mixer serves two purposes in our measurement setup. We generate microwave

control pulses with nanosecond precision by mixing a control pulse generated by the DACs

(I and Q port of the mixer) with a high frequency local oscillator (LO port), giving us full

control over the phase and amplitude of the signal going into the fridge (RF port on the

mixer), where VRF = I(t) sin(ωLOt) + Q(t) cos(ωLOt). We typically excite the qubit and

apply the readout signal by modulating the LO-signal with a low frequency sine wave

generated by the DACs. For example, the DACs generate a signal with frequency fSB

on one quadrature of the mixer, then the output signal will have a spectral component

at both fLO − fSB and fLO + fSB (with some leak through at fLO). If needed, we can
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remove one of the sidebands by either filtering or by generating the appropriate tone on

the other quadrature.

We also use the mixer to extract the quadrature components [see discussion in 6.3]

of an RF signal, a useful technique for digitizing the amplitude and phase of a high

frequency signal. Heterodyne detection down-converts the high-frequency signal at the

rf-port to an intermediate-frequency for easy signal processing. We use a custom FPGA-

based analog-to-digital converter ADC card to capture the two quadratures of the down-

converted signal. The FPGA on the card picks out the spectral components of the

downconverter signal that contains information about the qubit. We use additional

lowpass and bandpass filters in the readout chain to minimize the voltage noise recorded

by the ADCs. The LabBrick attenuators are digital attenuators controlled via USB.

7.3 Readout Cavity Spectroscopy

In the next few sections, we discuss the procedure for characterizing the Xmon once

it has been cooled down to the base temperature of the DR. We first spectroscopically

probe the readout cavity using the vector network analyzer (VNA). In the dispersive

limit, where the average number of photons in the cavity is n̄ < ncrit, the |0〉 state qubit

modifies the resonance ωr of the bare cavity by χ0
2:

ωr − ω|0〉 ≈ χ0 =
g210
∆0

(7.1)

where ∆0 = ω10−ωr, ω
|0〉 is the resonance of the cavity when the qubit is in the |0〉 state,

and g10 is the dipole coupling constant between the cavity and the ω10 mode of the qubit.

2The resonator is actually modified by S0 of Equation A.18, but in the dispersive limit S0 ≈ χ0.
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Figure 7.5: Transmitted power through the readout channel as a function of probe fre-
quency and flux bias for a VNA power of -30 dBm (a) and -70 dBm (b). The transmitted
power is in units of dB.

In Figures 7.5(a) and (b), we plot the power transmitted through the readout channel

as a function of probe frequency and qubit flux bias. The flux bias tunes the Josephson

energy EJ , which consequently modifies the frequency of the qubit.

If the cavity-qubit system is driven at a high power, the cavity response becomes

strongly nonlinear, causing ω|0〉 to approach ωr [120, 121, 122]. A large number of photons

in the cavity (n̄ ≫ ncrit) causes the cavity to behave classically – the cavity is no longer

influenced by the presence of the qubit. A “punch out” calibration returns χ0; a separate

measurement of f10 allows us to extract g10 from the measured χ0. In Figure 7.6 (a),

we plot transmitted power through the readout channel as a function of probe frequency

for different VNA powers. In Figure 7.6(b), we plot the cavity response at low and high

driving power, with a measured χ0/2π = 1.49 MHz. We fit the transmitted power to

extract the intrinsic and coupling quality factors of the cavity, Qi and Qc respectively



171

6.61 6.611 6.612 6.613 6.614 6.615 6.616 6.617

−30

−25

−20

−15

−10

−5

0

5

10

15

6.612 6.613 6.614 6.615

-10

-20

-30

-40

-50

-60

-70

10

0

-10

-20

-30

(a) (b)

Frequency (GHz) Frequency (GHz)

P
o
w
e
r 
In
 (
d
B
m
)

|S
2
1
|2
 (
d
B
)

Figure 7.6: This figure illustrates the “punch out” calibration of the readout cavity.
(a) Line cuts of the transmitted power through the readout channel for different VNA
powers. (b) The cavity response when weakly driven (blue) and strongly driven (black).
The transmitted power is fitted to extract the quality factors of the cavity Qi and Qc.

[113]. At low powers, with n̄ ≪ ncrit, the cavity has a measured Qi = 43.8 × 103 and

Qc = 5.8× 103.

7.4 Qubit Spectroscopy

We set the readout probe tone to ωp = ω|0〉, and the readout power is chosen such

that ω|0〉 ≈ ωr − χ0. Probing on resonance gives maximum distinguishably between

the |0〉 and |1〉 state when monitoring the amplitude of the output voltage. The qubit

frequency ω10 is determined by spectroscopically probing the qubit, where the response

of the readout resonator is monitored as a function of qubit drive frequency. We precisely

control the qubit and readout microwave drive, as shown in the pulse sequence illustration

in Figure 7.7(a), where τµw = 10 µs is the duration of the qubit microwave drive tone, and

τm = 1 µs is the duration of the microwave measurement tone. The same pulse sequence
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is repeated on the order of 1000 times and the average magnitude of the heterodyne

voltage is recorded. We choose τµw to be on the order of T1, ensuring a measurable

percentage of the ensemble are |1〉 states. The measurement time τm is chosen to be long

enough for decent SNR but much shorter than T1 to minimize |1〉 state relaxation.

In Figure 7.7(b), we plot the averaged heterodyne voltage as a function of qubit drive

frequency for two different qubit drive powers. If we increase the power of the qubit

microwave drive, we can excite two photon transitions between the |0〉 and |2〉 state in

addition to higher-order transitions; when the qubit drive power is reduced higherer-order

transitions vanish and the f10 line width reduces. The measured qubit transition is Lamb

shifted by ω10 + χ0; however, in the dispersive limit the Lamb shift will not change our

calculations of the Stark shift and g10 by a significant margin.
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Figure 7.8: Rabi oscillations with the (a) averaged heterodyne voltage as a function of
drive power and qubit microwave drive time τµw. (b) Rabi oscillations at one power with
a π-pulse time of τπ = 60 ns.

7.5 Rabi Oscillations

Rabi oscillations, shown in Figures 7.8(a) and (b), give us a calibration of the qubit

drive pulse amplitude and duration needed to flip the |0〉 state of the qubit to the |1〉

state – a gate called a π-pulse since the state of the qubit rotates 180◦ about either the

x or y-axis. The pulse sequence is the same as shown in Figure 7.7(a), but we sweep

over both the qubit drive power and τµw. As illustrated by the data in Figure 7.8(a), at

larger qubit drive powers the frequency of the Rabi oscillations gets larger. The speed

of π-pulse is fundamentally limited by the anharmonicity of the qubit, which is on the

order of α/2π = f21 − f10 ≈ 250 MHz, for a minimum pulse duration of approximately

2π/α = 4 ns. In practice, we aim to keep τπ much shorter than T1 but longer than the

anharmonic limit. The qubit drive amplitude of the data in Figure 7.8(b) gives a τπ = 60

ns.
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Figure 7.9: (a)The pulse sequence used to measure the energy relaxation time constant
T1. The qubit is prepared in the |1〉 with a π-pulse of duration τπ. The qubit is then
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wait time interval, useful for swap spectroscopy. (b) The measured heterodyne voltage
as a function of τπ, with a T1 = 10.8 µs.

7.6 Qubit Decoherence

Decoherence refers to the assorted processes by which coupling to the environment

cause the state of the qubit to degrade, consisting of two parts: dephasing and relaxation.

Computationally, decoherence results in random-rotations about the three axes of the

Bloch-sphere, scrambling the prepared state of the qubit. Dephasing describes rotations

about the z-axis caused by noise in the control parameters that define the Hamiltonian

of the qubit. For example, flux noise of the two-junction SQUID loop results in EJ

fluctuations and consequently fluctuations in ω10 [123]; fluctuations in ω10 cause the

state vector to randomly rotate about the z-axis. Relaxation describes the process by

which the |1〉 state of the qubit loses energy to the environment and decays to the |0〉

state. In the language of NMR, decoherence is benchmarked by the exponential decay

times T1 and T2: T1 describes the lifetime of a qubit prepared in the |1〉 state, while T2

describes the lifetime of qubit prepared at the equator of the Bloch sphere. The state



175

5.70 5.75 5.80 5.85 5.90 5.95
0

10

20

30

40

50

60

 

 

5.65 5.70 5.75 5.80 5.85 5.90 5.95 6.00

4

6

8

10

12

14400

100

250

W
a

it
 T

im
e

 (
μ
s)

T
1
 (
μ
s)

f
10

 (μs)f
10

 (μs)

(a) (b)

Figure 7.10: Swap spectroscopy experiment. In (a), we plot the heterodyne signal as a
function of wait time τw and qubit frequency f10. We fit each trace to extract T1 as a
function of f10, shown in (b).

prepared in the x-y plane of the Bloch sphere is sensitive to both energy relaxation and

dephasing with T2 given as:

1

T2
=

1

2T1
+

1

Tφ
, (7.2)

where is Tφ is the dephasing time constant. In the absence of dephasing, the measured

T2 is set by the relaxation rate.

We measure T1 with the pulse sequence illustrated by Figure 7.9(a), where the |1〉

state is prepared with a calibrated π-pulse of duration τπ, and we wait a time τw before

measuring the state of the qubit. An ensemble average of the qubit state is recorded as

a function of τw by repeating the pulse sequence on the order of five-thousand times. As

plotted in Figure 7.9(b), the heterodyne voltage is fit to an exponential decay function,

giving us access to T1.
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The energy relaxation rate depends on the qubit frequency ω10, where we observe dra-

matic changes in T1 over a small range of qubit biases. We perform a swap-spectroscopy

scan in qubit bias using the pulse sequence of Figure 7.9(a), where the bias of the qubit is

adjusted with a z-pulse of variable amplitude between state preparation and qubit read-

out. The heterodyne readout signal as a function of wait time τw and qubit frequency f10

is plotted in Figure 7.10 (a). We fit the data at each bias point to extract T1 as a function

of f10 [Figure 7.10(b)]; the qubit exhibits a fine structure of variable relaxation rates. In

order to investigate the bias dependence in T1, we perform fine qubit spectroscopy using

the same pulse sequence of Figure 7.7(a), except we change the bias using the z-pulse

control line when driving the qubit. As plotted in Figure 7.11, f10 shows the expected

dependence on qubit bias, varying smoothly without any noticeable energy splittings at

the qubit frequencies with reduced T1 times. The absence of avoided level crossings in-

dicate the absence of strongly coupled defects [26]. As Barends et al. [32] explain, the

fine structure of the relaxation rate is consistent with the qubit incoherently interact-

ing with a sparse bath of surface defects present near the metal edges of the capacitor.

Additionally, the UCSB group has consistently observed maximum relaxation rates of

over 40 µs for the Transmon, suggesting that an element of our experimental setup is

contributing to qubit relaxation. The major difference between our setup and the UCSB

setup is our lack of infrared filters on the microwave lines of the qubit. They developed a

50 Ω infrared filter with little insertion loss that are place on all the microwave channels

of the qubit. We are presently developing the same components and hope their addition

will dramatically improve the lifetime of the qubit.

The Ramsey pulse sequence, illustrated in Figure 7.12(a), measures T ∗
2 of the qubit.

The |0〉 state of the qubit is brought to the equator of the Bloch sphere with a calibrated

π/2-pulse of duration τπ/2 = τπ/2. The state is allowed to dephase for a time τH until a
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Figure 7.11: Fine spectroscopy scan of qubit. The averaged heterodyne signal as a
function of qubit drive frequency and z-pulse amplitude is plotted.

second π/2 pulse places the state back on the z-axis of the Bloch sphere. We detune the

qubit with a z-pulse, which allows the state of the qubit to precess about the z-axis at a

frequency equal to the detuning of the qubit from the initial control pulse. The envelope

of the resultant signal will decay with a time constant T ∗
2 , which is the parallel sum of

two decay rates: 1/T ∗
2 = 1/T2 + 1/T ′

2. We plot the results of a Ramsey experiment in

Figure 7.12(b), with an extracted T ∗
2 = 6.4 µs. T2 describes “homogenous broadening,” or

the random rotations of the state vector present in every sequence of any gate operation.

“Inhomogenous broadening,” described by T ′
2, is a signature of low-frequency noise of

the qubit bias over the course of acquiring the ensemble average. One can mitigate the

effects of T ′
2 with a spin-echo measurement.
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Figure 7.12: (a) The pulse sequence of the Ramsey experiment, where τπ/2 is the duration
of a π/2-pulse. (b) The measured Ramsey fringes with an extracted T ∗

2 = 6.4 µs.

7.7 Stark Shift Calibration

A calibration of the number of photons in the cavity as a function of drive power is

necessary for benchmarking the readout of the qubit. As discussed in Appendix A, the

qubit frequency ω10 will shift as a function of the average number of photons n̄ in the

resonator. The pulse sequence for the Stark shift experiment, shown in Figure 7.13(a),

drives the readout cavity for a duration longer than its ring-up time, ensuring that the

cavity-qubit system is in the steady state. Once in the steady state, we perform qubit

spectroscopy and measure the Stark shifted f10. In Figure 7.13(b), we have stitched

together the results of a number of Stark shift experiments for different drive voltages

AStark. We fit each spectroscopic trace to a Lorentzian distribution and plot the change

in f10 as a function of resonator drive, shown in Figure 7.14(a).

Using the measured g10 and the lowest three measured qubit energy splittings (f10, f21,

and f32), we calculate the Stark shift as a function of the average cavity photon population

using Equation A.23. We fit the calculated Stark shift to the data in Figure 7.14(a), which
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extracts the proportionality constant that relates n̄ to A2
Stark. This analysis incorrectly

assumes that the dressed state of the cavity does not shift with readout drive power. In

practice, the dressed state approaches the bare resonance of the cavity for large AStark,

resulting in a non-quadratic relationship between AStark and n̄ [120]; however, the cavity

photon population behaves quadratically for n̄ close to ncrit since the resonance of the

cavity shifts much less than the linewidth κ of the cavity.

7.8 Cavity Response

As discussed in Section 6.3.5, we determine the measurement fidelity by comparing the

response of the resonator when the qubit is prepared in either the |0〉 or the |1〉 state. In

Figure 7.15, we plot the response of the readout cavity at a fixed readout drive amplitude

for different qubit preparations. The quadrature components, plotted in Figure 7.15(a),

of a quarter-wave resonator should follow a circular trajectory [Figure 6.5(c)], where

the path in quadrature space is identical for two resonators of different resonances. In

practice, the transmitted signal accumulates a phase with periodicity vph/L, where is vph

is the phase velocity of the signal and L is the total distance between the generator and the

measured signal. This accumulation of phase explains the trajectory of the quadrature

components away from the resonance in Figure 7.15(a). A model that accounts for

complex in-line inductances [27] (e.g. wire bonds) and impedance mismatches explains

the observed asymmetry of the resonator response.

In Figures 7.15(b) and (c), we plot the heterodyne amplitude and phase, respectively,

of the recorded heterodyne signal as a function of probe frequency. Note that the photon

occupation of the cavity changes with probe frequency since the amplitude of the readout

signal is fixed; the number of photons in the resonator is n̄ ≈ 30 at a probe frequency
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halfway between the two state dependent resonances. The observed dispersive shift

2χ ≈ −850 kHz is consistent with the theoretical 2χ plotted in Figure 7.14(c).

7.9 Measurement Fidelity Without the SLUG

The qubit-cavity system has the following characteristics for the measurements re-

ported in this section: f10 = 6.0132 GHz, f21 = 5.7848 GHz, f23 = 5.5412 GHz, the bare

cavity resonance fr = 6.6129 GHz, low-power resonator dressed state of f |0〉 = 6.6143

GHz, g10/2π = 29.89 MHz, internal quality factor Qi = 43.8×103, and a coupling quality

factor of QC = 5.8 × 103. We probe the response of the cavity at a frequency fp = f |0〉.

The measured energy relaxation time constant is T1 = 10.8 µs. The average number of

photons in the cavity n̄ assumes the driven resonator is in the steady state. The critical

number of photons is ncrit =
∆2

0

4g2
10

= 100.6.
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Figure 7.17: (a)The projected histograms and fits of the prepared |0〉 (blue) and |1〉
states (red). (b)The integrated probabilities of the prepared |0〉 (blue) and |1〉 states
(red). The measurement fidelity (green) is just the difference between the two integrated
probabilities. The dashed purple line is the threshold of the measurement.

Measurement fidelity is determined with repeated measurements of the qubit pre-

pared in the |1〉 and |0〉 state. In Figures 7.16(a) and (b), we plot the two-dimensional

histograms of the measured heterodyne signal for 15000 realizations of qubit prepared in

the |1〉 and |0〉 state, respectively. The resonator was probed for a time τm = 2 µs and

a drive power with n̄ = 108 photons. The |0〉 state of the qubit was prepared without a

control pulse, while the |1〉 state was prepared with a π-pulse of duration τπ = 64 ns. As

expected, there are two distinct blobs in quadrature space that correspond to the |1〉 and

|0〉 state of the qubit. Measurement fidelity depends on three factors: the distinguishably

of the two states, quantified by the signal-to-noise ratio SNR of the measurement; the

qubit relaxation rate; and our ability to repeatedly prepare the qubit in the expected
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state. It is clear from Figure 7.16(b) that the qubit is not fully initialized into the |0〉

state.

We quantify the measurement fidelity of the qubit by projecting each two-dimensional

heterodyne signal onto an integration line that maximizes the separation of the two states.

We then fit the two histograms of the projected signal with a pair of double-Gaussian

functions of the following form:

f0 =
δxN

2− P0

[

1

σ0

√
2π

exp

(

−(x− µ0)
2

2σ2
0

)

+
1− P0

σ1

√
2π

exp

(

−(x− µ1)
2

2σ2
1

)]

, (7.3)

f1 =
δxN

2− P1

[

1− P1

σ0

√
2π

exp

(

−(x− µ0)
2

2σ2
0

)

+
1

σ1

√
2π

exp

(

−(x− µ1)
2

2σ2
1

)]

, (7.4)

which depends on the following six fit parameters: P0 (P1) is the probability that the

state is in the |0〉 state (|1〉 state) when preparing a |0〉 state (|1〉 state), µ0 (µ1) is the

center of the |0〉 state (|1〉 state) along the axis of integration, and σ0 (σ1) is the standard

deviation of the |0〉 state (|1〉 state) distribution. Additionally, δx is the bin size of the

histogram, x is the location of the bin along the integration axis, and N is the total

number of experiments in each distribution. The measured SNR is:

SNRmeas =
|µ0 − µ1|
σ1 + σ0

, (7.5)

and the probability that the qubit is in the |0〉 state when preparing a |1〉 is:

P0|1 = 1− P1, (7.6)
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Figure 7.18: (a) The raw Fraw (solid lines) and corrected Fcor (dashed lines) measure-
ment fidelities as a function of readout time τm for n̄ = 108 (blue) and n̄ = 212 photons
(red). (b) The raw Fraw (solid lines) and corrected Fcor (dashed lines) measurement
fidelities as a function of n̄ for τm = 600 ns (blue) and τm = 1200 ns (red).

and similarly, the probability that the qubit is in the |1〉 state when preparing a |0〉 is:

P1|0 = 1− P0. (7.7)

A P1|0 > 0 can be blamed on poor initialization of the qubit or measurement induced

excitation. The histogram fits of Figure 7.17(a) return a P1|0 = 0.1014, which remains

constant as a function of measurement drive power and measurement time, suggest-

ing that the qubit is not initialized in the |0〉 state properly. A P0|1 > 0 can be the

result of measurement induced relaxation, poor state preparation, and the relaxation

process described by the time constant T1. We extract a P0|1 = .2350 from the data

in Figure 7.17(b). It is difficult to breakdown the contributions to P0|1 without further

analysis.



186

400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

200 400 600 800 1000 1200 1400 1600 1800

Measurement Time (ns) Photons in Resonator

(b)(a)

S
N

R

Figure 7.19: (a)The measurement SNR as a function of readout time τm for n̄ = 108
(blue) and n̄ = 212 photons (red). (b) The measurement SNR as a function of n̄ for
τm = 600 ns (blue) and τm = 1200 ns (red).

We calculate the raw measurement fidelity from the data by integrating and then

subtracting the histograms of the two states, plotted in Figure 7.17(b). The position

along the integration axis with the maximum measurement fidelity is the threshold of

the measurement, where a single measurement below the threshold is counted as the |1〉

state. The raw measurement fidelity for the data in Figure 7.17 is Fraw = 0.6231. We

also calculate a corrected fidelity where P0|1 = P1|0 = 0 and SNRmeas = 1.97 is the

limiting factor, with Fcor = 0.9512 for the data in Figure 7.17; this agrees perfectly with

the expression for fidelity in Equation 6.64 in the limit that T1 ≫ τm.

To draw parallels with earlier work by Gambetta et al. [114], we calculate the effi-

ciency of the amplification chain ηdet:

ηdet =
1

1 + nsys
, (7.8)
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where nsys is the total number of noise quanta added by the amplification chain, we

experimentally define as:

nsys =

(

SNRideal

SNRmeas

)2

− 1

2
, (7.9)

where SNRideal is the calculated SNR with nsys = 0.5 [from Section 6.3.43], where

SNRideal = 10.706 for this particular measurement. We finally evaluate a nsys = 29.03

quanta for a detector efficiency of ηdet = 0.033. A nsys = 29.03 is larger than the 20

quanta we estimated in Section 5.4; however, the signal leaving the qubit passes through

almost 3 feet of copper cable, two isolators, two bias-T’s, and two coax-relays before

reaching the HEMT. The isolators alone have an insertion loss of approximately 0.5 dB

each, while the copper cables are specced at room temperature to to have about 0.8 dB

of insertion loss per foot. A conservative estimate of 2 dB of attenuation between the

qubit and the HEMT gives an adjusted nsys of 18 quanta of added noise. The number

that matters for measurement fidelity is the original nsys = 29.03 but a trivial change in

the wiring can significantly improve ηdet in future measurements.

In Figures 7.18(a) and (b), we plot the raw and corrected measurement fidelities as

a function of τm and n̄. The raw measurement fidelity saturates at 0.62 for a n̄ = 108 ≈

ncrit. Also note that the raw fidelity saturates and sharply bends down for large n̄ at

τm = 1.2 µs; the dispersive regime of the qubit-cavity system breaks down for large n̄,

which causes measurement induced relaxation and a reduced SNR as the dressed state

of the cavity shifts towards ωr. In Figure 7.19(a), we plot the measurement SNR as a

function of τm for two different n̄. As expected [see Figure 6.9], the SNR goes as τ
3/2
m for

3We calculate SNRideal by calculating 2χ/2π = 0.726 MHz from the qubit parameters specified at
the beginning of this section. We also incorporate resonator loss into the model of Section 6.3.4.
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Figure 7.20: Added system noise quanta nsys as a function of τm for n̄ = 108 photons
(blue) and n̄ = 212 photons (red). We calculate nsys using the SNRmeas of Figure 7.19(a).

τm ≪ 2π/κ = 877 ns and approaches τ
1/2
m for τm greater than the cavity ring-up time.

In Figure 7.19(b), we plot SNR as a function of n̄ for two different τm; the SNR rolls off

at large n̄ for τm = 1.2 µs, suggesting that a reduced SNR is responsible for the rolloff

in fidelity plotted in Figure 7.18(b). In Figure 7.19, we plot nsys as a function of τm for

n̄ = 108 ≈ ncrit and n̄ = 212 ≈ 2ncrit. An amplification chain with a large dynamic range

has a nsys that should not depend on τm or the number of photons in the resonator. The

time dependence of nsys suggests that the resonator rings-up slower than we calculated;

a more complete model of SNR must include the τm dependence of the dispersive shift

2χ.

7.10 Improved Fidelity with SLUG Amplifier

A SLUG amplifier is switched into the amplification chain with the coax-relays. The

SLUG used to measure the qubit in this section has similar noise and gain performance as
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Figure 7.21: The measured gain (a) and SNR improvement (b) of the amplification chain
with the SLUG amplifier. Both the gain and SNR are in units of dB.

SLUGA described in Chapter 5. We quickly estimate the SNR4 of the amplification chain

by comparing the transmitted power when the cavity-qubit system is driven a few MHz

off-resonance to the noise power with the microwave generator off. We measure the SNR

of the amplification chain for different SLUG flux and current biases; the gain and SNR

of the SLUG are plotted in Figures 7.19(a) and (b). There is a narrow range of SLUG

bias points that appear to improve the SNR of the amplification chain by 17 dB with a

gain of 29 dB. The sensitive dependence of SNR and gain on flux bias implies that the

SLUG is being operated close to a resonant step edge in the V −Φ characteristics of the

device. It has already been experimentally and theoretically verified that the non-linear

performance of the SLUG when biased close to a step-edge performs with high-gain,

low-bandwidth and low-dynamic range. It is likely that the measured SNR at these bias

points will decrease with input power as the amplifier saturates. It is also likely that

4The SNR measured with the spectrum-analyzer is related to but different than the SNR that de-
scribes the ability of the amplification chain to distinguish the two states of the qubit.
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these bias points are unstable in time and exhibit hysteretic behavior. There are bias

points in Figure 7.21 that do not drastically vary with bias and show a respectable SNR

improvement of 9 dB and a gain of 17 dB.

The cavity-qubit system is described by the same qubit and cavity resonances as

the previous section; switching the SLUG into the amplification chain does not affect

the measured relaxation time T1. In Figures 7.22 and 7.23, we plot the progression of

the measured heterodyne signal for different average cavity photon occupations n̄ at

measurement times τm = 600 ns and τm = 2 µs. Notice the clear separation between the

two states at n̄ = 53 photons and τm = 600 ns – this level of distinguishability was not

possible without the SLUG amplifier. We measure a P1|0 = 0.0944 and a P0|1 = 0.2307

for τm = 2 µs and n̄ = 108 photons – within the margin of error of the values measured

without the SLUG.

As a reminder, n̄ was calibrated using the Stark shift with the probe tone set to the

low-power resonance of the cavity dressed by the |0〉 state of the qubit. For n̄ < ncrit, there

is a linear relationship between input power and n̄; however, as n̄ exceeds ncrit the |0〉 state

resonance converges with ωr, and in consequence the reported n̄ overestimates the actual

average cavity photon population. The resonance shift is clearly seen in Figures 7.22

and 7.23 at high n̄ , where the position of the two states have rotated counterclockwise

in the IQ plane. It also worth noting that n̄ was calibrated in the steady state, meaning

n̄ at τm = 600 ns is less than n̄ at τm = 2 µs for the same drive power.

A third blob in the IQ plane pulls away from the |1〉 state blob at large readout powers

and long measurement times – this feature is quite clear in both columns of Figure 7.23.

It isn’t clear if the presence of the third blob is due to a strong measurement, or if

a strong measurement is necessary to reveal the third blob – by squinting hard, one

might be convinced that the extra blob starts to form at n̄ = 53, τm = 2 µs. We are still
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Figure 7.22: Histogrammed heterodyne signal for different average cavity photon popu-
lations n̄ when measured for a time τm = 600 ns. Column one (two) is the signal when
the qubit is prepared in the |1〉 (|0〉) state. The false color scale is the log of the bin
counts.
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Figure 7.24: (a) The raw Fraw (solid lines) and corrected Fcor (dashed lines) measure-
ment fidelities as a function of measurement time τm for n̄ = 108 (blue) and n̄ = 212
photons (red). (b), The raw Fraw (solid lines) and corrected Fcor (dashed lines) measure-
ment fidelities as a function of n̄ for τm = 600 ns (blue) and τm = 1200 ns (red). These
measurements were done with the SLUG in the amplification chain.

investigating the origin of the extraneous IQ blob, but we suspect the qubit levels outside

the computational manifold play a role. It should also be noted that the presence of the

extra IQ features invalidate our fidelity analysis described in the last section, where it is

unclear how to define SNR and the integration axis for fitting the data.

We plot the raw and corrected measurement fidelities versus readout time for two

different drive powers in Figure 7.24(a). The raw fidelity plateaus at 0.73 for a τm = 600

ns when driving the resonator at a n̄ = 212 ≈ 2ncrit; this is a substantial improvement

when compared to the raw fidelity of 0.46 that was measured without the SLUG at the

same τm and n̄. A correction for relaxation and initialization errors give us a fidelity of

0.99 for n̄ = 212 and τm = 600 ns. Note that the fidelity plateaus at a shorter τm when

driving the cavity at a high power; this behavior is also captured in Figure 7.24(b).

The measurement SNR, determined with a fit of the heterodyne signal, is plotted

versus τm and n̄ in Figures 7.25(a) and (b), respectively. The measurement SNR with
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Figure 7.25: The measurement SNR with (dashed) and without (solid) the SLUGin the
amplification chain. (a) The measurement SNR as a function of τm for n̄ = 108 (blue)
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Figure 7.26: PSNR versus Pin for τm = 600 ns (blue) and τm = 1200 ns (red). From
Equation 7.11, a n̄ = 1000 corresponds to a Pin = −102.0 dBm.
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the SLUG shows roughly the same dependence on τm and n̄ as the SNR without the

SLUG in the amplification chain. The SLUG enhances the SNR of the measurement

chain by roughly 10 dB in power, calculated as PSNR:

PSNR =

(

SNRSLUG
meas

SNRref
meas

)2

, (7.10)

where SNRSLUG
meas (SNRref

meas) is the measurement SNR with (without) the SLUG in the

amplification chain; the 10 dB improvement in measurement SNR is consistent with the

results reported in Figure 7.21(b). In Figure 7.27, we plot PSNR as a function of input

power for τm = 600 ns and τm = 1200 ns. The input power Pin is calculated using

Equation 6.54 with ∆ω|0〉 = 0:

Pin =
〈V 2

G〉
R0

=
|VG|2
2R0

= 2~ωκn̄, (7.11)

where n̄ is the steady state number of photons in the resonator, meaning that the actual

readout power at the input of the qubit for a τm = 600 ns and τm = 1200 is less (at

most 3 dBm) than Pin. Also note that the SNR determined by the fit of the heterodyne

signal becomes less accurate as Pin increases. With these caveats in mind, the data in

Figure 7.27 suggests that the SLUG has a 1 dB compression point of roughly Pin = −105

dBm, or 505 photons in the resonator; this may be improved at a SLUG bias point

further from the resonant step edge without noticeably sacrificing amplifier performance.

A -105 dBm 1 dB compression point is over an order of magnitude better than the best

JPA. In Figure 7.27, we plot nsys calculated with Equation 7.9 as a function of τm for

two different drive powers.
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Figure 7.27: Added system noise quanta nsys with the SLUG in the amplification chain
as a function of τm for n̄ = 108 photons (blue) and n̄ = 212 photons (red). We calculate
nsys using the SNRmeas of Figure 7.25(a).

7.11 Conclusions and Outlook

7.11.1 Improving Measurement Fidelity

The measurement fidelity can be improved with a redesign of the qubit, as discussed

in Section 6.3.4; additionally, a further reduction in the noise temperature of the SLUG

will improve the readout. However, there are some simple adjustments that would imme-

diately improve measurement fidelity with the same qubit and SLUG amplifier described

above.

At a τm = 600 ns and n̄ = 211 photons, we have an SNRSLUG
meas = 2.565. Considering

a T1 = 10 µs, we use Equation 6.64 to calculate an estimated fidelity of F = 0.96;

however, we observe a measurement fidelity of 0.725. We are throwing away roughly

20% of fidelity from the 10% initialization error. We suspect that the chip is at a higher

effective temperature than the mixing plate of the DR, which would cause a non negligible

population of the |1〉 state. While writing this thesis, we have added additional base
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temperature attenuation to the input of each port of the Xmon for a reduced initialization

error of roughly 4%. We believe that with the addition of inline infrared filters and with

better heat sinking of the attenuators we can reduce the initialization error down to

nothing.

According to Equation 6.64, even with an infinite SNR we are T1 limited to a fidelity

of F = 0.970 at a τm = 600 ns. However, an overall improvement in the measurement

SNR would allow us to measure the qubit in a shorter amount of time, slightly mitigating

the effects of energy relaxation. There are two trivial changes in the measurement that we

can make to improve the SNR. First, there is roughly 3 feet of copper coax, a circulator,

a bias-T, and a two coax-relays between the qubit and the SLUG – all with an insertion

loss that reduces the SNR before the signal reaches the SLUG amplifier. While we can’t

remove the circulator or the bias-T, we can replace the copper-cable with superconducting

niobium, and we can remove the coax-relay at the price of modularity. For example, the

removal of 2 dB of attenuation between the qubit and SLUG reduces a system noise of

nsys = 2.5 down to 1.4 quanta of added noise. Additionally, as shown in Figure 6.9,

probing the readout resonator halfway between the two dressed states ω|0〉 and ω|1〉 will

increase the SNR by roughly 20% when compared with probing at ω|0〉.

7.11.2 Future Qubit-SLUG Experiments

A near quantum limited SLUG amplifier paves the way for a number of exciting

experiments involving qubits. The SLUG amplifier has a much larger dynamic range

than the best JPA, and, with the demonstrated measurement fidelity and SNR of the

SLUG, we should be able to resolve quantum jumps in the state of the qubit [39]. As

discussed throughout this thesis, the dispersive limit of Jaynes-Cummings hamiltonian

loses validity for n̄ > ncrit; however, no one has investigated the limits of QND detection.
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For some critical readout power, the measurement will scramble the state of the qubit,

leaving the qubit in a different state than the measured state. With a high fidelity

measurement, we can resolve the state of the qubit as a function of time. By exploring

the statistics of how the state of the qubit evolves as a function of measurement power

and readout time, we can map out how a QND measurement transitions into the non-

QND regime. An amplifier with a large dynamic range is needed to accurately explore

this QND boundary.

We also want to explore how the backaction of the SLUG amplifier affects the per-

formance of the qubit. While the SLUG is a non-reciprocal device, the elevated electron

temperature of the shunt resistors along with high-frequency Josephson oscillations gen-

erated by the junctions in the voltage state may degrade the coherence of the qubit.

For the experiments in this chapter we have placed an isolator between the SLUG and

the qubit; however, isolators are bulky, costly, and have a non-negligible insertion loss.

Removing the isolator will reduce the system noise of the measurement chain and free

up space on the mixing plate. We plan on exploring how the relaxation rate of the qubit

changes as a function of SLUG gain and noise temperature.
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Appendix A

Jaynes Cummings Hamiltonian

A.1 Full Jaynes Cummings Hamiltonian

The Jaynes Cummings Hamiltonian describes a generalized two level system, or qubit,

with an energy splitting ~ω10 interacting with photons in a cavity with resonance fre-

quency ωr. This system is described by the generalized Hamiltonian ĤJC :

ĤJC = ĤTLS + Ĥcav + Ĥint, (A.1)

where ĤTLS is the TLS Hamiltonian:

ĤTLS =
1

2
~ω10σ̂z, (A.2)

with σ̂z being:



200

σ̂z = |1〉〈1| − |0〉〈0| =







1 0

0 −1






, (A.3)

where the excited qubit state 〈1| = (1 0) and 〈0| = (0 1). Ĥcav is the Hamiltonian of the

field in the cavity:

Ĥcav = ~ωr(â
†â+

1

2
), (A.4)

where â† and â are the photonic raising and lowering operators, respectively. Ĥint is the

interaction Hamiltonian:

Ĥint = ~g(â+ â†)(σ̂+ + σ̂−), (A.5)

which is just the field operator â + â† multiplied by the polarization operator σ̂+ + σ̂−,

and scaled by the interaction strength g, or rate at which the cavity and qubit exchange
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energy. σ̂+ and σ̂− are the raising and lowering operators of the qubit respectively,

defined as:

σ̂+ = |1〉〈0| =







0 1

0 0






, (A.6a)

σ̂− = |0〉〈1| =







0 0

1 0






. (A.6b)

In the Rotating Wave Approximation, we ignore the terms that do not conserve

energy: â†σ̂+ and âσ̂− 1, giving us the following well know ĤJC :

ĤJC =
1

2
~ω10σ̂z + ~ωr(â

†â+
1

2
) + ~g(âσ̂+ + â†σ̂−). (A.7)

A.2 Dispersive Approximation for a Two Level Sys-

tem

A.2.1 First Order Approximation

In order to perform a QND measurement of the qubit state, ĤJC must take on a

form that commutes with the projective measurement σ̂z. In the dispersive regime, the

qubit and cavity do not exchange energy, such that the eigenstates of the system are

1In the interaction picture âσ̂+ and â†σ̂− oscillate at |ωr − ω10|, while the subsequently ignored
terms rotate at |ωr + ω10|. On the relevant time scales the |ωr + ω10| terms average to 0, as long as
|ωr + ω10| >> |ωr − ω10|.
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well approximated by the product states of the qubit and cavity. Equation A.7 can be

rewritten as:

ĤJC = Ĥ0 + ~gX̂+, (A.8)

where Ĥ0 =
1
2
~ω10σ̂z + ~ωr(â

†â + 1
2
) and X̂± = σ̂−â† ± σ̂+â. We apply a unitary trans-

formation D̂ = exp(λX̂−) to Equation A.8 and then expand about λ = g/∆ ≪ 1, where

∆ = ω10 − ωr:

Ĥdisp = D̂†ĤJCD̂

= ĤJC + λ[ĤJC , X̂−] +
λ2

2
[[ĤJC , X̂−], X̂−] + o(λ3)

≈ 1

2
~ω10σ̂z + ~ωr(â

†â +
1

2
) + ~

g2

∆
(â†â +

1

2
)σ̂z, (A.9)

which is easy to show using the following commutation relations: [σ̂+, σ̂−] =

σ̂z, [σ̂z, X̂−] = −2X̂+, [â
†â, X̂−] = X̂+, and [X̂+, X̂−] = 1 + 2σ̂z(â

†â + 1/2). The fi-

nal line of of Equation A.9 has three terms corresponding to the qubit, the cavity, and

their interaction. Note that the interaction term now commutes with our measurement

σz. Ĥdisp can be rearranged as:

Ĥdisp =
1

2
~(ω10 +

g2

∆
+

g2

∆
â†â)σ̂z + ~ωr(â

†â+
1

2
), (A.10)
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where the qubit’s frequency is now shifted by g2/∆ - the zero-point energy of the cavity

field, known as the Lamb shift - plus the photon dependent Stark shift g2

∆
â†â, with â†â

being the number of photons in the cavity. To understand how the qubit influences the

cavity resonance, we can finally recast Ĥdips into the following form:

Ĥdisp =
1

2
~ω10σ̂z + ~(ωr +

g2

∆
σ̂z)(â

†â+
1

2
), (A.11)

where the cavity frequency is shifted by the state dependent ±χ = ±g2/∆, know as

the dispersive shift. In consequence, probing the resonance of the cavity measures the

projective state of the qubit.

A.2.2 Higher Order Approximation

In the previous section, we derived the familiar form of the Jaynes Cummings Hamil-

tonian in the dispersive limit Ĥdips, but the above perturbation is only correct to the first

order in λ. Boissonneault et. al.[124] fully diagonalize ĤJC to give the following general

dispersive Hamiltonian:

Ĥdisp =
1

2
ω10σ̂z + ~ωcâ

†â− 1

2
~∆(1−

√

1 + 4λ2Nq)σ̂z, (A.12)

where Nq = â†â+ |1〉〈1| = â†â+ 1/2(σ̂z + 1). It follows that the Lamb shift δL is:
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~δL = Edisp(â
†â = 0, σ̂z = 1)− Edisp(â

†â = 0, σ̂z = −1)− ~ω10

=
1

2
~∆(1−

√
1 + 4λ2) = ~χ+ o(λ5), (A.13)

where χ = g2(1− λ2)/∆. The Stark shift δS(â
†â) is:

~δS(â
†â) = Edisp(â

†â, σ̂z = 1)−Edisp(â
†â, σ̂z = −1)− δL − ~ω10

=
1

2
~∆(

√

1 + 4λ2(â†â+ 1) +
√

1 + 4λ2â†â− 1−
√
1 + 4λ2)

= ~χâ†â + ~ζ(â†â)2 + o(λ5), (A.14)

where ζ = −g4/∆3. Expanding Equation A.12 to third order in λ leads to the following

approximation:

Ĥdisp ≈ ~(ωr + ζ)â†â +
1

2
~

[

ω10 + 2χ(â†â+
1

2
) + 2ζ(â†â)2

]

σ̂z, (A.15)

The definition of the critical photon number ncrit comes from the above expansion

about 4λ2Nq ≪ 1:

ncrit =
∆2

4g2
. (A.16)
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A.3 Dispersive Limit for Many-Level System

The above approximation breaks down for a weakly anharmonic system. For the su-

perconducting qubits in this thesis, the anharmonicity is on the order of α = ω10−ω21 ≈

250 MHz. The presence of the higher order eigenstates modify the Jaynes-Cummings

hamiltonian and in consequence the dispersive shift of the resonance frequency of the

cavity. Boissonneault et al.[120] studied the MLS-resonator system, considering a trun-

cated Hilbert space of M states labeled |0〉, ..., |M−1〉, obtaining the following hamiltonian

to fourth order in λi = −gi+1,i/∆i:

HD
S ≈ H̃0 +

M−1
∑

i=0

SiΠi,iâ
†â+

M−1
∑

i=0

KiΠi,i(â
†â)2, (A.17)

where Πi,j = |i〉〈j| is the product state, H̃0 is the Lamb shifted Hamiltonian of the bare

qubit and cavity H0 = ωrâ
†â +

∑M−1
i=0 ωiΠi,i, Si is the ac-Stark coefficient:

Si = [χi−1(1− λ2
i )− χi(1− λ2

i−1 − 2χi−1λ
2
i−1]

+
1

4
[9χi−2λ

2
i−1 − 3χi−1λ

2
i−2 − χiλ

2
i+1 + 3χi+1λ

2
i ]

− g
(2)
i λ

(2)
i − 3g

(2)
i−2λ

(2)
i−2, (A.18)

and Ki is the Kerr coefficient:
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Ki =
1

4
[3χi−2λ

2
i−1 − χi−1λ

2
i−2 + χiλ

2
i+1 − 3χi+1λ

2
i ]

+ [χi − χi−1][λ
2
i + λ2

i−1]− g
(2)
i λ

(2)
i − 3g

(2)
i−2λ

(2)
i−2. (A.19)

The above coefficient depend on the following definitions: χi = g2i+1,i/∆i, ∆i = (ωi+1 −

ωi)− ωr, g
(2)
i = λiλi+1(∆i+1 −∆i), and λ

(2)
i = −g

(2)
i /(∆i+1 +∆i), where χi = λi = 0 for

i 6∈ [0,M−2]. It follows that the cavity will have the following state dependent resonance

frequency:

ω|0〉,|1〉
r = ωr + S0,1 +K0,1n̄, (A.20)

where ω
|0〉
r (ω

|1〉
r ) is the resonance of the cavity when the qubit is in the |0〉 (|1〉) state,

and n̄ = 〈â†â〉 is the average cavity photon population. Note that in the dispersive limit

and for small n̄, ω
|0〉
r is well approximated by:

ω|0〉
r ≈ χ0 =

g210
∆0

, (A.21)

which is a helpful identity when experimentally determining g0. The dressed cavity states

are separated by 2χ:

2χ = ω|1〉
r − ω|0〉

r = (S1 − S0) + (K1 −K0)n̄, (A.22)
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while the qubit frequency is modified by the cavity pull, known as the ac-Stark shift, in

the following way:

ζ = 2χn̄ = (S1 − S0)n̄+ (K1 −K0)n̄
2. (A.23)

The above discussion gives us the power to calculate the dispersive shift (2χ) and the

ac-Stark shift (ζ) as a function of n̄ after experimentally determining ω10, ω21, ω32, g10,

and ωr. This is a useful tool for calibrating n̄ as a function of readout drive power.
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Appendix B

Numerical Techniques

This appendix goes over the details of simulating both classical and quantized Joseph-

son based electronics. For the classical numerics we follow the techniques discussed by

Tesche et. al. [81].

B.1 Numerical Integration

All classical equations of motion in this thesis can be reduced to a set of coupled first

order differential equations, with time as their independent variable. For example, the

general second order differential equation:

ÿ(t) = f [ẏ(t), y(t), t] , (B.1)

becomes two coupled single order differential equations:
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ġ(t) = f [g(t), y(t), t] ,

ẏ(t) = g(t), (B.2)

where the dot overhead is the time derivative. Once in this form, we use the common

fourth order Runge-Kutta iterative method to numerically integrate the set of first order

differential equations. Let’s write down this method for the simple example of Equa-

tion B.2. We’re interested in solving for time t between 0 and A, with time step h, where

h is smaller than the relevant time scales of the solution–h can be iteratively chosen for

a convergent solution that isn’t unnecessarily computational intensive.

We first choose initial conditions g0 = g0, and y0 = y0, which for this thesis are

arbitrarily set to 0 – the initial conditions are “forgotten” with enough time. In general,

the superscripts k of the solution refer to kth time step. The solutions to g and y can be

approximated as:

tn+1 = tn + h,

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4),

gn+1 = gn +
1

6
h(m1 + 2m2 + 2m3 +m4), (B.3)

where:
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k1 = gn,

k2 = gn +
1

2
m1,

k3 = gn +
1

2
m2,

k4 = gn +m3, (B.4)

and:

m1 = f [gn, yn, tn],

m2 = f [gn +
1

2
m1, y

n +
1

2
k1, t

n +
1

2
h],

m3 = f [gn +
1

2
m2, y

n +
1

2
k2, t

n +
1

2
h],

m4 = f [gn +m3, y
n + k3, t

n + h]. (B.5)

The numerical techniques in this section are applied throughout this thesis when solv-

ing the classical equations of motion of any Josephson based device. It is straightforward

to incorporate noise sources and voltage sources into the analysis.

B.2 Classical Thermal Noise

The classical voltage spectral density of a resistor R at temperature T is just:

SN
V = 4kBTR (B.6)
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In dimensionless units, Equation B.6 rescales as:

S̃N
V = 4Γ (B.7)

where Γ = 2πkBT
I0Φ0

is the dimensionless temperature. The power spectral density is just

the mean square of the voltage variance per hertz of bandwidth. With this definition,

a discrete ṼN series is generated from a normal distribution with a zero mean and a

standard deviation
√
2Γfs =

√

2Γ/h, where h is once again the time step. ṼN can then

be plugged into the mechanics of our Runge-Kutta solver.

B.3 Quantum Thermal Noise

The quantum voltage spectral density of a resistor R at temperature T is just:

SN
V = 2hfR coth

(

hf

2kBT

)

, (B.8)

where h is Planck’s constant and f is the frequency. In the quantum limit, where hf ≫

kBT , Equation B.8 reduces to:

SN
V ≈ 2hfR. (B.9)

In dimensionless units, Equation B.9 rescales as:



212

S̃N
V = χf̃, (B.10)

where χ = 8hπ2R/Φ2
0, and f̃ is the dimensionless frequency. Equation B.10 describes

the voltage spectral density only for f > 0, where S̃N
V = 0 for f̃ < 0. We generate the

noise in the frequency domain with an amplitude defined by Equation B.10 but with a

random phase θ. The complex signal in the frequency domain has the following form:

Sq = fsNχf̃ [cos θ + i sin θ] (B.11)

which is true for f̃ > 0, and where fs is the sampling frequency and N is the total number

of time steps. We then take the inverse Fourier transform of Sq to get the noise voltage

as function time that we can plug into our Runge-Kutta solver, where we include the

f̃ < 0 side of the spectrum when Sq = 0.

B.4 SLUG Spectral Noise Components

The different SLUG noise components are numerically extracted from the equations

of motion in the same way for both the thermal and quantum noise sources. For exam-

ple, when calculating SV , the output voltage is solved using the standard Runge-Kutta

method described above. The power spectral density of the output voltage is computed

using MATLAB’s pwelch. SV is computed in this way for many (∼ 100) different real-

izations of the added Johnson noise, finally averaged together to give a smooth form for

the spectral density, with an example plotted in Figure ??. The noise spectrum consists
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Figure B.1: SV for the output voltage of a SLUG with βL = 1, βC = 0.8, L = 10 pH,
C = 50 fF, Ib = 1.9I0, Φb = 0.4Φ0, T = 100 mK.

of a series of peaks at the Josephson frequency and its harmonics; the noises plotted in

Sections 3.5 and 3.5 are evaluated at low frequency f ≪ fj where the spectrum is white.
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