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abstract

Recent demonstrations of error correction in many qubit circuits, as well as

efforts to build a logical qubit, have shown the need for a simple and scalable

superconducting quantum bit (qubit) readout. Current solutions based on het-

erodyne detection and cryogenic amplification of microwave readout tones may

prove difficult to scale, while photon counting presents an attractive alternative.

However, the development of counters operating at these frequencies has proved

technically challenging. In this thesis, we describe the development of the Joseph-

son Photomultipler (JPM), a microwave photon counting circuit. We discuss the

JPM theoretically, and describe the fabrication of the JPM using standard thin film

lithography techniques. We measure its properties as a microwave photon counter

using a qubit as an in-situ calibrated source of photons. We measure a JPM quan-

tum efficiency at the few percent level. We then use the JPM to perform readout

of a transmon qubit in both the dispersive and bright regimes. We observe raw

measurement fidelities of 35% and 62% respectively. We discuss how the JPM and

measurement protocol could be further optimized to achieve fidelities in excess of

90%.



1

1 introduction

...nature isn’t classical, dammit, and if you want to make a simulation of nature,

you’d better make it quantum mechanical, and by golly it’s a wonderful problem,

because it doesn’t look so easy.

—Richard Feynman (1982)

In many ways, human history during the twentieth century has been shaped

by the history of computers. Starting with the use of the first large-scale systems

used during the Second World War to break Axis encryption, computers have

deeply affected the course of world events, the way we live our lives, and even

the way in which we think. Alan Turing’s paradigm of the universal computer

now transcends its origin in pure mathematics and informs how we think about

questions in science, in fiction, and even human cognition. From the invention of the

first solid-state transistors by Bardeen, Brattain and Shockley in 1947, physicists have

been intimately involved in the bewildering pace of innovation and miniaturization

of digital computers that has made them as ubiquitous as they are powerful. As

we approach the third decade of the twenty-first century, what new paradigms can

we look towards to continue to expand the reach of computers?

1.1 Quantum Computers

In a 1981 speech [45], Richard Feynman challenged the assembled physicists

to envision a different kind of computing machine: one that would explicitly use
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the rules of quantum mechanics to simulate nature. As he pointed out, the use of a

quantum system is necessary, as a classical computer would require an amount of

resources exponential in the size of the simulated system. David Deutsch [35, 36]

refined this idea into that of the quantum computer: a collection of quantum bits

(quantum two-level systems that can be entangled with one another) and quantum

gates (unitary operations) acting on these qubits. Such a device is not only capable

of universal computation, but can be more powerful than any classical computer.

A striking demonstration of this fact came with the discovery of Shor’s algorithm

[134], which gives an exponential speedup to factorization of composite numbers 1.

These theoretical developments have led to a large experimental effort to build a

quantum computer. DiVincenzo listed the criteria that would be needed for such a

machine [43]:

1. A scalable physical system with well-characterized qubits

2. The ability to initialize the state of the qubits to a simple state

3. Long decoherence times, much longer than the gate operation time

4. A universal set of quantum gates

5. A qubit-specific measurement capability

1That many encryption algorithms rely on the difficulty of the factoring problem, and so could
be broken by Shor’s algorithm, has not escaped the intelligence community. This fact has driven
much of the interest in, and consequently the funding for quantum computing research. It is clear,
at least, that the National Security Agency believes that quantum computers will one day be built,
recently encouraging end users to migrate to forms of encryption resistant to attack by quantum
techniques [80].
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of two values: 0 or 1. In a quantum computer, the analog of a bit is a ’qubit’: a

quantum system with two states, typically denoted |0〉 and |1〉. The qubit can then

be in any superposition state, with a wavefunction: |Ψ〉 = a0 |0〉 + a1 |1〉, with |a0|2

and |a1|2 the probability of measuring the qubit in either state. The state of the qubit

is represented as a point on the surface of the Block sphere, as shown in Figure 1.1.

|Ψ〉 is represented as a vector on the unit sphere, with |0〉 at the south pole and |1〉
at the north pole. The unitary operations that the quantum computer will perform

on the qubit then become rotations of the vector on the Bloch sphere.

Any two level system found in nature can in principle be used as a qubit, with

the standard example being the two spin states of an electron in a magnetic field.

Much of the difficulty in making a qubit practical for quantum computation lies

in creating a system that is strongly coupled to the environment so that it can be

controlled and measured, but not so strongly coupled that the interaction with the

environment leads to excessive decoherence, destroying the quantum state. There is

active research on many different physical realizations of qubits: spins on quantum

dots [94], Rydberg atoms [126], and NV centers in diamond [151], to name just

a few. While every architecture presents tradeoffs, superconducting qubits have

many advantages, and there has been tremendous experimental progress in the

last two decades.

1.1.2 Superconducting Qubits

Superconducting qubits exploit the remarkable fact that superconductors show

quantum behavior at macroscopic scales. We can use this to build the qubits from
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electrical circuits designed to have anharmonic spectra. The lowest two energy

levels of the oscillator can then be used as the computational |0〉 and |1〉 states.

While we defer a more detailed description of the physics of superconducting

qubits to Chapter 2, all such qubits share a common element: a resonator with

a nonlinear inductance. Conveniently, this circuit element can be made with a

Josephson junction: two superconductors separated by a weak link, often a thin

metal oxide.

This approach offers many benefits. The qubits can be made from superconduc-

tors microfabricated using traditional thin film processing techniques, and their

macroscopic size makes them easy to model using standard integrated circuit simu-

lation tools. The energy scale is at microwave frequencies, and the impedance [38] of

the circuit is close to the 50Ω standard of electrical engineering. This tight coupling

to the control leads allows for fast gate operations on the qubit, but comes at a cost:

significant decoherence due to environmental noise sources. Much of the progress

in the field has been due to an assault against these sources of noise. For example,

materials research has cleaned up defects in the junction barrier [100], reduced

loss due to dielectrics and the superconductor-substrate interface [98, 118, 42], and

continues to search for the source of 1/f magnetic flux noise [12]. Along with clever

circuit engineering to decouple the qubit and heavy filtering on control lines, qubit

lifetime has improved from sub-nanosecond in 1999 [110] to in excess of 50 μs in

transmon qubits today [124].
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1.1.3 Scaling Up

The long coherence time demonstrated by these circuits, as well as the develop-

ment of high-fidelity single and two qubit gates, has made it possible to construct

small-scale quantum "processors" that can perform coherent operation on several

qubits (for example, [156, 9]). However, individual qubits and gates are still far

from the threshold required to build a useful quantum computer that could run an

interesting algorithm. Quantum algorithms are based on the manipulation of large

entangled states of many qubits, so even extremely small error rates can accumulate

and render the calculation useless. Rather than trying to use physical qubits with

potentially impossible perfection, it seems likely that a quantum computer will

need to use a quantum version of error correction [119]. There are many possi-

ble implementations [106, 55, 78, 75], but all of them trade reduced demands on

qubit and gate fidelities for increased physical and algorithmic complexity. The

quantum information is stored in logical qubits, groups of many physical qubits.

Recently, small circuits that can correct for bit-flip errors [77] and bit and phase-flip

errors [33] have been experimentally demonstrated. One implementation that has

received considerable recent attention is the surface code [47]. Implemented as

a two-dimensional mesh of qubits, it requires only nearest-neighbor qubit-qubit

couplings, and can accommodate error rates at the 1% level. The large number of

qubits required to implement this form of error correction is a significant hurdle:

one design [46] for a computer able to factor a large semi-prime number estimates

that it will need millions of physical qubits to function. Even for a smaller system

with a more modest number of qubits, a key challenge is the need to measure the
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quantumelectrodynamics (cavityQED) [107, 148], an atomic physics technique used

to study the interaction between electromagnetic fields and single atoms. Figure 1.2

illustrates the typical cavity QED setup. A high quality Fabry-Pérot cavity confines

a single electromagnetic mode, which interacts with a single atom placed in the

cavity. If the mirrors are semi-transparent, a measurement of photons leaking out of

the cavity yields information about the state of the atom. In circuit QED, the optical

cavity is replaced by amicrowave resonant cavity and a superconducting qubit plays

the role of the atom, as shown in Figure 1.3a. The cavity can be a microfabricated

thin-film circuit in two-dimensional implementations, or a macroscopic microwave

resonator in 3D implementations; these circuits typically operate in the C and

X bands of the RF spectrum (approximately 4 to 12 GHz). By weakly coupling

radiation to the cavity through small coupling capacitors, we can measure the state

of the qubit by looking at its microwave transmission. In electrical engineering

language, the impedance of the qubit depends on its state, and the different amounts

of current flowing through the qubit to ground modify the cavity resonance.

It is instructive to write down the Hamiltonian of the coupled cavity-qubit

system, the Jaynes-Cummings Hamiltonian:

ĤJC = Ĥqb + Ĥcav + Ĥint

= 1
2�ω10σ̂z + �ωc(â†â+ 1

2) + �g(â†σ̂− + âσ̂+) (1.1)

This is the Hamiltonian for a two-level system with energy �ω10 coupled to a

harmonic oscillator (representing the cavity) with level spacing �ωc through an
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signal through the cavity is a measurement of the qubit state.

1.2.1 Measurement

While the question of measurement in quantum mechanics has always been

contentious, we will limit ourselves to considering it in the framework of von

Neumann measurements [70]. We choose some basis over which a quantum state

|Ψ〉 is defined, and perform a measurement to check which basis state the system

is in. Independent of the initial state of the system, we will find it in one of the

basis states of the measurement with random probability. As a concrete example,

performing measurement of a qubit in the energy basis |Ψ〉 = a0 |0〉 + a1 |1〉 will

collapse thewave function to either of the two eigenstates |0〉 and |1〉. By performing

repeated measurements we can access |a0|2 and |a1|2.

Types ofmeasurements which are especially important for quantum information

are Quantum Non-Demolition (QND) measurements [32]. QND measurements

leave the system in its measured state, making it possible to perform repeated

measurements. This is possible if the observable being measured is an eigenstate of

the system; mathematically, we want our measurement Hamiltonian to commute

with the system Hamiltonian:

[Ĥsys, Ĥmeas] = 0 (1.3)

For a qubit, this type of measurement still probabilistically collapses the state

vector onto the z-axis, but all subsequent measurements will return the same result.
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Of course, information about the x and y components of the state vector is lost

since σx and σy do not commute with σz. The ability to make consistent repeated

measurements of our system is advantageous, as it allows us to turn a single weak

QND measurement of the system above into a strong projective measurement

through repeated measurements. The dispersive measurement discussed above is

one example of this type of weak QND measurement (i.e. [Ĥdisp, σz] = 0).

1.2.2 Amplifier Readout

Dispersive QND measurement of a superconducting qubit has been demon-

strated by many groups [66, 144, 73, 20, 147]. Experimentally, one uses a low noise

amplifier and a heterodyne detection setup to monitor the phase or frequency shift

through the qubit cavity. The output RF signal is modulated by the state of the

qubit, so it is natural to decompose it into its two quadratures, I and Q:

Vout(t) = Re [I(t) + iQ(t)] eiωt

= I(t)cos(ωt) −Q(t)sin(ωt) (1.4)

In the complex I,Q plane, the two states of the output signalwill appear as Gaussian

distributions, as show in Figure 1.4. The width σn of these gaussians reflects

the noise added to the signal by the measurement amplification chain. For a

measurement with bandwidth B, and an amplifier that adds nadd photons of noise
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to the signal, this will be :

σn =
√
�ω(nadd + 1/2)Z0B (1.5)

The signal to noise ratio of themeasurementwill be vsig/2σn, where vsig is the voltage

separating the two state gaussians. The integration time of the measurement is

limited by the energy decay of the qubit (parametrized by T1). Additionally, the

measurement power is limited (although it is possible to perform readout using a

strong drive in a non-QND manner [120]), since the dispersive approximation of

1.2 breaks down past a critical number of photons given by

ncrit = Δ2

4g2 (1.6)

Improving SNR and thus measurement fidelity for amplifier based readouts there-

fore requires maximizing gain while minimizing the added noise of the amplifiers.

However, all linear phase-preserving amplifiers must add at least a half-quantum of

noise to the signal [27]. This is often referred to as the standard quantum limit (SQL).

When cascading amplifiers, the noise of the first amplification stage is the dominant

contribution for sufficiently large gain [116], so there has been considerable effort

spent developing quantum-limited amplifiers for qubit readout. Fortunately, the

physics of Josephson junctions offers many ways to realize quantum-limited or near

quantum-limited amplifiers.

A popular approach relies on parametric amplification of the signal using a

strongly driven nonlinear resonator incorporating a Josephson junction. Known as
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power while being within a factor of two of the standard quantum limit. A different

approach has relied on voltage-state superconducting quantum interference device

(SQUID) based amplifiers.x The most successful of these is the superconducting

low inductance galvanometer (SLUG) amplifier [122, 65, 66], which not only is near

quantum-limited over an instantaneous bandwidth of a few hundred megahertz,

but also provides some intrinsic non-reciprocity, protecting the qubit from noise

from later gain stages.

While these amplifiers have been used in impressive experiments on single

qubits, such as quantum feedback stabilization of Rabi oscillations [143], and have

been a key enabler for the small-scale demonstrations of error correction mentioned

above, there remain significant challenges to their scalability. Parametric amplifiers

require large pump tones which must be isolated from the qubit using one or more

microwave circulators, which is problematic as circulators are bulky and rely on

magnetic fields to generate the needed non-reciprocity. The SLUG amplifier does

not need a pump tone to provide gain, and it offers intrinsic non-reciprocity [64],

but it is a hot voltage state device2 and has not yet shown performance comparable

to the paramps. Amplifiers are also expensive in terms of physical size and device

complexity, and even today we are reaching the limits on the number of microwave

lines that can be routed to the cold stage of a dilution refrigerator.

2The SLUG operates with Ib > Ic and therefore dissipates power in the resistors that shunt the
SQUID loop[66].
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1.2.3 Photon Counting

Can we implement qubit readout in a more simple and scalable way? One

potential solution is to replace amplifier-based readout, which corresponds to

measuring the qubit cavity field amplitude â+ â† with a device that can measure

the photon occupation of the cavity â†â. While in principle a single photon contains

enough information to determine the qubit state, photon detection at microwave

frequencies has been a formidable challenge. Optical photon counters rely on a

metal with a work function small enough that an incident photon will create a

photoelectron that can then be multiplied in order to generate a large signal. This

approach is doomed to failure for microwaves as photon energies are far too small:

5 GHz corresponds to an energy of only 20 μeV, tens of thousands of times smaller

than typical work functions.

Despite this, photon counting is an attractive technique for qubit readout in

circuit QED systems if a few requirements are met. The photon detecting circuit

should be as small and simple as possible, allowing tight integration with the

quantum system and readout of a large number of qubits. The counter should

provide a large and easily measurable classical signal in order to minimize the

physical overhead of the readout. Finally, we would like to build the photon counter

using the standard building blocks of superconducting electronics: Josephson

junctions. The first proposal for such a circuit, using current-biased junctions, was

made by Romero et al. in 2009 [125]. In 2011, Chen et al. [28] implemented this type

of photon counter, naming them Josephson Photomultipliers (JPMs), and used them

to measure non-classical correlations in the arrival times of microwave photons
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emitted from a thermal source. This thesis describes our results on perfecting the

JPM and using it to read out a transmon qubit.
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2 quantum electronics

It should not be surprising that to build superconducting quantum comput-

ers we need to consider the quantum dynamics of electrical circuits. A circuit is

completely described by the voltages at its nodes, the currents flowing through its

branches, and the topology of their connections. These voltages and currents (or

equivalently, charges and fluxes) can be taken as the generalized coordinates of the

system, playing the roles of particle positions and velocities in classical mechanics.

The equations of motion of the circuit can then be computed by using a Lagrangian

or Hamiltonian approach. This is a powerful technique1 that also presents us with

the opportunity to quantize electrical circuits by straightforwardly copying the

way in which we quantize systems from classical mechanics. For a more in depth

discussion on this approach than offered here, the reader is referred to the work of

Devoret [37] and Yurke and Denker [162].

This use of quantum mechanics is different from its usual realm of applicability:

instead of describing microscopic particles, we are studying macroscopic circuit

elements. The quantummechanical approach to circuit theory does not describe the

dynamics of individual particles, but that of collective degrees of freedom which

can exhibit quantum properties. For macroscopic quantum dynamics to become

relevant, the system should be sufficiently well isolated such that the spacing

between energy levels is much larger than thermal fluctuations and much larger

than their width. Thinking of a microwave LC oscillator with a resonant frequency

1And can be even further generalized by considering circuits as networks using category theory,
see [5].
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ω0/2π ∼ 5GHz, we want �ω0 � kBT and a quality factor Q � 1. Practically, this

means temperatures on the order of a few tens of millikelvins or less and circuits

with very low dissipation, which can both be realized by building circuits out of

superconducting elements.

2.1 Quantizing Circuits

The formal approach to quantizing a lumped-element superconducting circuit

is to write down the classical circuit Hamiltonian (or Lagrangian), and replace the

classical variables with quantum-mechanical operators. In order to do so, we must

settle on a convenient set of variables to describe the circuit; a good choice is to use

the charge Q and magnetic flux Φ stored by circuit elements. We define the flux as:

Φ(t) =
∫ t

−∞
V (t′)dt′ (2.1)

where V (t) is the voltage across the circuit element. When we promote q and Φ

to quantum variables, we need only replace them with operators q̂ and Φ̂, which

satisfy the canonical commutation relation:

[Φ̂, q̂] = i� (2.2)
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From standard circuit theory, we can then write the energy stored in capacitors and

inductors 2:

EC = 1
2CV

2 = q2

2C (2.3)

EL = 1
2LI

2 = Φ2

2L (2.4)

2.1.1 Quantum LC Oscillator

Figure 2.1: An LC oscillator circuit.

As a concrete example, we consider the quantum mechanics of a simple parallel

LC oscillator, as seen in Figure 2.1. In this two-node circuit, we only need to consider

charges and fluxes at one node, since the other is grounded. The equation of motion

of the circuit is derived by equating the current flowing from the inductive element

2Of course, this whole formalism can be extended to cover dissipative elements such as resistors.
This is straightforward in the classical case, see [152] for details. The quantum formulation requires
much more care; an overview can be found in [95]. The standard approach, due to Caldiera and
Leggett [24], is to model a resistance as an infinite bath of parallel LC oscillators. The general study
of such open quantum systems remains an area of active research.
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to that flowing to the capacitor:

Φ
L

= −Cd
2Φ
dt2

(2.5)

Noting the obvious similarity to Newton’s equation of motion for a particle moving

in a potential Φ2/2L, the Lagrangian of the circuit is given by:

L = CΦ̇2

2 − Φ2

2L (2.6)

where Φ takes on the role of particle position and Φ̇ that of velocity. To write down

the Hamiltonian we replace the latter by the conjugate momentum

∂L
∂Φ̇

= CΦ̇ ≡ q (2.7)

and use the Legendre transform to calculate:

H = Φ̇q − L = q2

2C + Φ2

2L (2.8)

Following the standard treatment of the quantum harmonic oscillator, we can

introduce creation and annihilation operators which satisfy [â, â†] = 1:

Φ̂ =
√
�Z0

2 (â+ â†) (2.9)

q̂ = −i
√

�

2Z0
(â− â†) (2.10)

where Z0 =
√
L/C is the characteristic impedance of the oscillator. Substituting
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these into Equation 2.8, we finally arrive at a Hamiltonian that takes a very familiar

form:

Ĥ = �ω
(
â†â+ 1

2

)
(2.11)

While this is not a particularly surprising result given the simple circuit we started

with, this procedure is general and can be used to derive the Hamiltonian of much

more complicated devices.

2.2 Superconducting Circuits

Themodernmicroscopic theory of superconductivitywas developed byBardeen,

Cooper and Schrieffer in their Nobel-prize winning 1957 work [7]. Below a critical

temperature Tc, some metals undergo a phase transition when the interaction be-

tween electrons near the Fermi surface becomes attractive. This attractive potential,

resulting from the coupling of electrons to lattice phonons, allows electrons of

opposite momentum to bind into Cooper pairs. Since electrons are spin-1
2 particles,

the Cooper pairs are composite bosons, and can condense into a Bose-Einstein

condensate. Their overall state is then described by a single wavefunction like order

parameter:

Ψ(r, t) =
√
n(r, t)eiθ(r,t) (2.12)

where n(r, t) is the density of Cooper pairs, and θ(r, t) a quantum-mechanical

phase.

The fact that the electronic state of a superconductor can be described by a single

wavefunction, what Edward Teller called the "miracle of superconductivity", leads
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to several remarkable properties. In the superconducting state, they exhibit zero

DC resistance. They can also support persistent currents with no dissipation, with

the lifetime of currents in superconducting rings measured to be in the billions of

years [140]. Superconductors also exclude magnetic fields through the Meissner

effect. This example of perfect diamagnetism forces currents in superconductors

to their edges, decaying exponentially away from the surface. The characteristic

length scale of this decay is the London penetration depth, λL. These effects allow

the realization of circuits with extremely high quality factors due to negligible

dissipation.

2.3 Josephson Junctions

(a) (b)

Figure 2.2: (a) Harmonic oscillator with equally spaced levels with energy En =
�ω0(n+ 1/2). (b) Anharmonic oscillator with ω0 < ω1 < � � �

Superconducting quantum circuits built out of only linear elements would be

interesting, but not useful as quantum bits. The reason is simple: the energy levels
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of a quantum harmonic oscillator, such as that described subsection 2.1.1, all have

the same spacing ω0 as shown in Figure 2.2a. An individual transition cannot

be addressed since all transitions have the same energy, and applying a drive at

frequency ω0 will result in a superposition of many states (in fact, a coherent state).

If the system has some nonlinearity, however, the resulting potential (Figure 2.2b)

has unequally spaced energy levels and it becomes possible to address individual

transitions. Typically, the two states (cf. Section 1.1.1) of superconducting qubits

are chosen to be the lowest two states of such an anharmonic potential.

S S
I

Figure 2.3: SIS Josephson junction, formed by two superconductors (S) separated by
a thin insulating barrier (I), typically an oxide. The amplitude of the wavefunctions
Ψ1 and Ψ2 of the condensate in each superconductor is represented by the red and
blue lines, showing how Cooper pairs can tunnel across the barrier.

Fortunately, superconductors provide us with the only known nonlinear, non-

dissipative element, the Josephson junction (JJ). As shown in Figure 2.3, a Josephson

junction is formed by two superconducting electrodes separated by a thin barrier.

Most commonly this barrier is a thin metal oxide, such as aluminum oxide, but it

can also be formed by a constriction in the size of the superconductor. If the barrier

is sufficiently thin, there is an appreciable probability for electrons to tunnel across
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it, leading to a current flowing through the junction of the form [140]:

I = Ic sin δ (2.13)

δ ≡ θ2 − θ1 is the phase difference between the wavefunctions describing the

superconductors on either side of the junction. The parameter Ic, known as the

critical current of the junction, sets the maximum current that can pass through the

barrier. Ic is set by the thickness and area of the barrier, the superconducting gap

of the electrodes, and any magnetic field present. Additionally, the voltage across

the junction is related to the phase difference by:

V = Φ0

2π δ̇ (2.14)

Where Φ0 ≡ h/2e = 2�067834 × 10−15 Wb is the magnetic flux quantum. Taken

together these two equations, known as the Josephson relations, imply two effects: a

DC current will flow across the junction even in the absence of a voltage, and an AC

current will appear across a DC voltage biased junction at a frequency f = VDC/Φ0.

A Josephson junction is a nonlinear inductance. This can be seen most easily by

directly computing the inductance from the Josephson relations:

LJ = V

(
∂I

∂t

)−1

= Φ0δ̇

2π
1

Icδ̇ cos δ

= Φ0

2πIc cos δ = LJ(0)
cos δ (2.15)
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The inductance depends nonlinearly on the phase across the junction and can in

fact diverge. LJ(0) is the zero-flux inductance and is referred to as the Joseph-

son inductance of the junction. The potential energy of the junction can also be

computed:

U =
∫ t

0
IV dt

= Φ0

2π

∫ δ

0
Ic sin(δ)dδ

= Φ0Ic

2π (1 − cos δ) (2.16)

The energy scale of the junction potential is set by EJ ≡ Φ0Ic/2π, the Josephson

energy. It is this nonlinear potential that is at the heart of experimental implemen-

tations of superconducting qubits.

2.3.1 Current-Voltage Characteristics

Figure 2.4a shows the current-voltage characteristic of an undamped Josephson

junction. For applied currents less than the critical current, the junction is in the

supercurrent state, with no voltage developing across the junction. When the bias

current exceeds the critical current, the junction switches to the normal state, where

a voltage can develop across it. When this voltage exceeds the superconducting

gap voltage Vg = 2Δ/e there is sufficient energy to break apart Cooper pairs and

the IV characteristic approaches that of a resistor. The tunneling resistance at a
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(a) (b)

Figure 2.4: (a) Undamped Josephson junction IV curve, showing supercurrent and
normal branches; the dashed arrow indicates the junction switching between these
two branches as the current is increased past the critical current Ic. The junction has
normal state resistance RN , and gap voltage Vg = 2Δ/e. The Ambegaokar-Baratoff
relation is also represented. (b) RCSJ model equivalent circuit for a Josephson
junction of critical current Ic, self-capacitance CJ , and normal state resistance RN ,
which can either be a real external resistance or a representation of the junction’s
intrinsic normal state conductance. VN is the noise voltage that develops across this
resistance, useful in modeling the noise properties of junction-based circuits [122].

temperature T is given by the Ambegaokar-Baratoff relation [2, 141]:

RN = πVg

4Ic

tanh
(

Δ
2kbT

)
(2.17)

The tunneling resistance RN is exactly the normal state resistance of the junction.

This makes it possible to estimate the critical current of a junction with a room-

temperature measurement of its resistance using a four-wire probe station.



27

2.3.2 The RCSJ Model

A useful semi-classical model of the Josephson junction is the RCSJ model

whose equivalent circuit pictured in Figure 2.4b. The junction is modeled as three

components in parallel: a supercurrent obeying the first Josephson relation 2.13,

a capacitance, and a resistance. The capacitance represents the self-capacitance

of the junction electrodes; in this thesis, we assume a value of 50 fF/μm2. The

resistance can represent either quasiparticle tunneling as given by 2.17 or a physical

external shunt resistance. Setting equal the external bias current Ib to the total

current flowing through the junction, we write:

Ib = Ic sin(δ) + Φ0

2πRN

δ̇ + CJ
Φ0

2π δ̈ − VN

RN

(2.18)

where VN =
√

4kbTRN is the Johnson-Nyquist voltage noise across the resistor

[122, 32]3. Dropping the noise voltage term, this equation can be rearranged to

yield an equation of motion for δ:

δ̈ = − 1
M

dU(δ)
dt

− δ̇

RNCJ

(2.19)

Where we have definedM = C(Φ0/2π)2 and the current biased junction potential

energy is:

U(δ) = −Φ0Ic

2π

(
cos(δ) + Ib

I0
δ
)

(2.20)

3At low temeperatures, the true spectral density of the noise is quantum and has spectral density
S(ω) ∝ ω. [122]
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to ib = 0. We can expand U(δ) around its minimum to get the small oscillation

frequency of the junction phase in the supercurrent state:

ωp = 21/4
√

2πIc

Φ0CJ

(1 − ib)1/4 (2.22)

This frequency, known as the plasma frequency is an important parameter that sets

the overall energy scale of quantum phenomena associated with this potential. We

will make use of these results repeatedly, and the quantum mechanical properties

(energy levels, tunneling rates, etc...) of this potential are considered in detail in

Appendix A.

Beyond developing an intuitive understanding of the dynamics of a junction,

the RCSJ model is invaluable in modeling the dynamics of Josephson devices. For

example, in [122] we use this model to write down the equation of motion for the

two junction phases in a SLUG amplifier, and solve these equations numerically to

investigate the gain, bandwidth and noise of this class of devices.

(a) (b) (c)

Figure 2.6: Schematic circuit diagrams of the three main qubit types: (a) phase
qubit, (b) flux qubit, or (c) charge qubit
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2.4 Superconducting Qubits

Superconducting qubits are all, at their core, a nonlinear resonator whose low-

energy states define the computational basis which is acted upon. In this section,

we will briefly describe the various ways in which such a nonlinear resonator can

be built out of superconducting linear circuit elements and Josephson junctions.

They differ primarily in the topology of the circuit, which in turn determines which

degree of freedom is a good quantum number of the system: charge q̂, flux φ̂ or

junction phase δ̂. Schematic diagrams of the three different qubit types are shown

in Figure 2.6. For a more thorough look at the different experimental possibilities,

the reader is urged to consult the review article by Clarke and Wilhelm [31]. We

will focus in this thesis on the transmon qubit, first described by the Yale group

[81], which is a refinement of the Cooper pair box (CPB) charge qubit. This is the

qubit used for the experiments described in this thesis, and it is the most commonly

used variant in the wider superconducting qubit community4.

2.4.1 Cooper Pair Box

The Cooper pair box [19, 131] is a simple circuit, shown in Figure 2.7, consisting

of a superconducting island connected to ground via a Josephson junction. The

island can be charged by applying a voltage Vg to an electrostatic gate that is capaci-

tively coupled to the island through a small capacitance Cg. The total capacitance of

the island to ground isCΣ = Cg +Cs, whereCs is the self-capacitance of the junction

4Although very recently flux qubits have seen renewed interest, in part due to their greater
anharmonicity [71].
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Figure 2.7: Schematic circuit of the Cooper pair box circuit. Vg and Cg are the
gate voltage and capacitance, Ic is the junction critical current, and Cs is the total
capacitance shunting the junction to ground, including its self-capacitance and any
explicit external capacitance.

plus any extra capacitance due to the circuit configuration. At low temperatures,

the only degree of freedom of this system is the number of excess Cooper pairs n on

the island. We describe this quantity quantum-mechanically through the number

operator n̂, with n̂ |n〉 = n |n〉. We can then write the electrostatic Hamiltonian as:

Ĥel = 4EC(n̂− ng)2 (2.23)

where Ec = e2/2CΣ is the energy needed to add a single electron to the island and

ng = CgVg/2e the gate-induced polarization charge (in units of Cooper pairs). The

Josephson effect allows Cooper pairs to hop on and off the island, with Hamiltonian:

ĤJ = EJ

2
∑

n

(|n〉 〈n+ 1| + |n+ 1〉 〈n|) (2.24)
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Remembering that charge and phase are two conjugate variables (Equation 2.2 ),

we can also write this term using Equation 2.16 and find for the total Hamiltonian:

Ĥ = 4EC(n̂− ng)2 − EJ cos
(
δ̂
)

(2.25)

Koch et al. [81] show how to exactly solve Schrödinger’s equation for this Hamil-

tonian in terms of Mathieu functions. The first three eigenenergies are plotted as

a function of gate charge for several values of the ratio EJ/EC in Figure 2.8. The

Cooper pair box, operating in the low EJ/EC limit, shows a strong dependence

of the transition energy E10 on gate charge ng. This large charge dispersion is

problematic, as the dominant dephasing mechanism is from 1/f noise due to local

random charge fluctuations near the Cooper pair box . For this type of spectrum,

the dephasing time is given by [81, 97]:

T2 ∼
∣∣∣∣∣∂E10

∂ng

∣∣∣∣∣
−1

(2.26)

Fortunately, the control offered by the electrostatic bias gate gives us an opportunity

to reduce this charge dependence by operating at the "sweet spot" ng = 1/2, where

the charge dispersion goes to zero. The physical origin of this effect is easy to

understand [145]: the point ng = 1/2 is an avoided level crossing 5 where the

ground and excited states are superpositions of the (|0〉 ± |1〉) charge states. Since
the two states have the same expected charge, they cannot be distinguished by

a charge measurement or perturbed by charge noise. Biasing at this point leads

5The degeneracy is lifted by the presence of the junction.
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to a significant improvement in qubit lifetime, but is inconvenient; the transmon,

described in the next section, takes a different approach to reducing the CPBs

sensitivity to this type of noise.
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2.4.2 Transmon

The transmon qubit, or transmission-line shunted plasma oscillation qubit, first de-

scribed in [81], is a CPB operated in the regime where EJ/EC � 1. Experimentally,

this is typically accomplished by shunting the junction in the circuit with a large

external capacitance. The advantage of this regime is obvious from Figure 2.8: the

charge dispersion is almost completely suppressed. This comes, however, at a cost:

the anharmonicity α ≡ E21 − E10 is also reduced. This could be problematic, as a

large anharmonicity is required in order for the first two qubit states to be selectively

addressed. However, a remarkable fact makes the transmon possible: while the

charge dispersion reduces exponentially, the anharmonicity is only suppressed

algebraically, and a trade-off can be made between the two. Koch et al. [81] show

that in the large EJ/EC limit the cosine term in Equation 2.25 can be expanded,

and a perturbation analysis yields the following expression for the transmon level

energies:

Ek ≈ −EJ +
√

8ECEJ

(
k + 1

2

)
− EC

4 (2k2 + 2k + 1) (2.27)

The anharmonicity is given by α = −EC . For typical parameters such that ω10/2π ∼
5GHz, the anharmonicity is α ∼ 300MHz. Using qubit rotation pulses longer

than 1/α ∼ 3ns in order to prevent spectral leakage at ω21 allows for many tens or

hundreds of coherent operations over a qubit lifetime.

As the name hints, the transmon is embedded in a transmission line, which

allows for both control of the qubit and state readout. This is, of course, exactly

the circuit QED scheme described in section 1.2. The transmon can be thought of
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as having an effective dipole moment, and to maximize coupling it is placed at

the voltage antinode of a microwave resonator. The Hamiltonian for this system is

given by [15, 81]:

Ĥ = 4EC (n̂− ng)2 − EJ cos δ̂ + �ωrâ
†â+ 2βeV 0

rmsn̂(â+ â†) (2.28)

Here, ωr = 1/
√
LrCr denotes the resonator frequency of the mode that has an

antinode at the transmon’s location, and {â, â†} are the usual creation and annihi-

lation operators for photons on the resonator. V 0
rms =

√
�ωr/2Cr is the root-mean

square voltage on the transmission line, and β = Cg/CΣ is the ratio of the coupling

capacitance to the total capacitance. By re-writing this Hamiltonian in terms of the

uncoupled transmon states |j〉, Koch et al. derive the generalized Jaynes-Cummings

hamiltonian (cf. Equation 1.1) for the transmon:

Ĥ = �
∑

j

ωj |j〉 〈j| + �ωrâ
†â+ �

∑
i,j

gij |i〉 〈j| (â+ â†) (2.29)

with couplings

�gij = 2βeV 0
rms 〈i|n̂|j〉 (2.30)

In the large EJ/EC limit, the coupling constants for neighboring states are well

approximated by:

�gj+1,j ≈ 2βeV 0
rms

√
j + 1

2

(
EJ

8EC

)1/4
=
√
j + 1g10 (2.31)
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Furthermore, the coupling between non-neighboring states vanishes:

gj+k,j = 0 for |k| > 1 (2.32)

Split Junction Transmon

Figure 2.9: Circuit schematic for a transmon with split junctions allowing for a
flux-tunable transmon energy. The two junctions with critical currents Ic1 and
Ic2 are shunted with capacitance Cs to ground, and the superconducting island
is coupled to a transmission line resonator with frequency ωr with a coupling
capacitor Cg. The flux Φ threading the junction SQUID loop can be modulated
using a bias inductor with mutualM . This inductance can be either a macroscopic
bias coil, or microfabricated on chip.

It is convenient to be able to tune the transition energy of the transmon qubit;

the easiest way to accomplish this is to split the single junction of the Cooper pair

box into a pair of parallel junctions [81, 64]. This creates the SQUID-like geometry

shown in Figure 2.9, which allows an external bias inductance to control the total

flux Φ through the ring formed by the two JJs. The two junctions will not necessarily
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have the same critical current, and we denote the junction asymmetry as:

d = EJ2 − EJ1

EJ2 + EJ1
(2.33)

The flux quantization condition then allows us to rewrite the junction energy term

in Equation 2.25 by making the substitution [81]:

EJ → (EJ1 + EJ2)cos
(
πΦ
Φ0

)√√√√1 + d2 tan2
(
πΦ
Φ0

)
(2.34)

Beyond an ability to tune the transmon energy spectrum, a split junction design

offers a few other advantages. As demonstrated by Strand et al. [137], the extra de-

gree of freedom allows for swapping of excitations between the qubit and resonator

by modulating the external flux at the qubit-resonator detuning. Intentionally

introducing an asymmetry in the critical currents of the two junctions can also

reduce sensitivity to flux noise by reducing ∂E10/∂Φ [81, 67].

2.4.3 Transmon Readout

Of course, one of the main advantages of the transmon qubit is that it inher-

ently reproduces the circuit QED architecture in superconducting electronics. The

attached resonator enables both control of the qubit state using microwave pulses

at the qubit transition frequency, and readout pulses that probe the cavity state

[15, 81]. For quantum information, the transmon is operated in the so-called disper-

sive regime [15, 81, 16, 17], where the qubit-cavity detuning Δ = ω10 − ωr satisfies

g01/Δ0 � 1. For simplicity, we rewrite the Jaynes-Cummings Hamiltonian of
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Equation 2.29 as:

ĤJC = �ωrâ
†â+ �ω10

σ̂z

2 + �gÎ+ (2.35)

where

Î± = â†σ̂− ± âσ̂+ (2.36)

Since we are in the dispersive limit, we can use the small parameter λ = g/Δ to

approximately diagonalize ĤJC using the unitary transformation [16]:

V̂ = eλÎ− (2.37)

Applying this transformation, we obtain the effective Hamiltonian for the dispersive

regime:

Ĥeff = V̂ †ĤJC V̂

= �ωrâ
†â+

(
�ω10 + 2gλ

(
â†â+ 1

2

))
σ̂z

2 + +O(λ2)

= �ω10
σ̂z

2 + (�ωr + �χσ̂z) â†â+ O(λ2) (2.38)

where cavity shift is χ = g2/Δ. This linear approximation to the dispersive regime

breaks down past the critical photon number ncrit = 1/4λ.

Because of the state-dependent cavity pull, a coherent drive near the cavity

frequency will displace the resonator’s state from vacuum to a final coherent state

|α1,0〉. The goal of the readout circuitry is then to distinguish between these two

states, usually through some form of homodyne detection, although this thesis

presents an altogether different approach to readout. In [49], Gambetta et al. showed
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that for a detector of efficiency6 η , integration time T1 = 1/γ1, and resonator decay

rate κ, the signal to noise ratio of themeasurement is given by SNR = ηκ|α1 −α0|/γ1.

The maximum value of SNR is reached for the choice κ = 2χ, with SNRmax =

4ηn̄χ/γ1. These results are only valid for a true two-level system in the linear regime,

and taking into account higher levels of the transmon and strong drive significantly

modifies these expressions [13, 18]. As these effects are of great importance to a

photon-counting readout, we discuss them in detail in appendix B.

6For an amplifier adding N quanta of noise to the system, η ≈ 1/(N + 1) [27].
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3 the josephson photomultiplier: theory

The origins of the Josephson photomultiplier1 can be found in a paper by Romero

et al. [125] wherein they discuss several potential implementations of a microwave

photon counter, including a current biased junction. This scheme was first im-

plemented experimentally by Chen et al. [28] and used to study the statistics of

coherent and thermal photon sources. The counter discussed in this thesis and

used for qubit readout is a direct descendant of these earlier implementations.

The JPM is a conceptually simple device. At its core, it consists of a single

junction that is current biased such that there are only two metastable states in the

potential energy well near one of the minima of the Josephson junction potential

of Figure 2.5. Since the higher energy level |e〉 is closer to the top of the barrier at

the edge of the well, the rate of tunneling to the voltage continuum from this state

is much larger than the ground state |g〉 tunneling rate. If the energy difference

between the two states is equal to the frequency of radiation incident on the junction,

there will be an enhancement in the tunneling rate corresponding to the absorption

of a photon and excitation of the junction. It is this enhanced tunneling rate, and

the large classical voltage pulse generated by the junction switching that acts as a

photon detecting circuit. Practically, one brings the junction into resonance for a

short period of time, and the presence of a switching event during the active time

interval indicates the detection of a photon. Since tunneling rates are large, on the

order of 1GHz, the active time can be as short as a few nanoseconds. These short

1The name originates with the McDermott lab, and is something of a misnomer as there is no
true multiplication process like what occurs between the dynodes of an optical photomultiplier
tube. It is, however, pithy and effective at conveying the purpose of the circuit.
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times, as well as the inherent simplicity of the circuit make the JPM an attractive

candidate for photon detection in cQED.

In this chapter, we will review the theoretical understanding of the JPM that we

have achieved to this date. We will also describe how the performance of the JPM

can be improved as well as benchmarked.

3.1 The Josephson Photomultiplier Concept

3.1.1 The Tilted Washboard

As discussed in the previous chapter, the potential energy of a Josephson junc-

tion of critical current Ic biased with current Ib takes the form:

U(δ) = −Φ0Ic

2π

(
cos δ + Ib

I0
δ
)

(3.1)

where δ is the phase across the junction. Due to its shape, this potential is often

known as the tilted washboard. We consider the quantummechanics of this potential

in detail in appendix A, and will use several of those results in this chapter. For

visual reference, the tilted washboard is diagrammed in Figure 3.1, showing a

current bias with two states in the well. The junction bias and junction area set the

number of levels in the well and the junction plasma frequency (which is close to

but not exactly ωeg) for a given current bias; these are plotted against the relative

current bias ib = Ib/Ic in Figure 3.2.

For operation as a JPM, we want a junction whose plasma frequency is close to
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Figure 3.1: Diagram showing the JPM potential with two states in the well. The
states are separated by energy �ωeg and tunnel to the voltage state with rates Γe,g.
Γx is the rate of excitation between ground and excited states, akin to the Rabi
frequency.

the frequency of incident microwave photons at a point where there are two levels

in the potential well. As the figure shows, a Josepshon junction with reasonable

area and critical current density satisfies both these requirements for frequencies

that are relevant to cQED experiments. At these values of current bias, the ratio of

excited to ground state tunneling rates is Γe/Γg ∼ 300, with Γg ∼ 1 − 10MHz. We

therefore expect to be able to operate the JPM with a pulsed "on" time of tens to

hundreds of nanoseconds while not accumulating too many dark counts where the

junction switches from the ground state without absorbing a photon. The junction

levels will be broadened by both the shallowness of the potential well as well as

the strong coupling to the environment. We can estimate the width of the junction
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3.2 JPM Performance

The arrival rate for photons arriving at the JPM can be characterized as a Poisson

process [146, 28]. For a flux of photons λ that is constant in time, the probability of

n photons arriving is given by

P (n) = (λt)n

n! e−λt (3.2)

However, since the JPM does not have any ability to resolve the number of photons

absorbed by the junction during the time it is active, we are interested in the arrival

probability of one or more photons:

P (n > 1) =
∞∑
n

(λt)n

n! e−λ

= 1 − eλt (3.3)

Of course, the probability of no photons arriving at the junction is simply e−λt. For

a non-constant flux of photons, the same calculation is valid but since we are now

considering an inhomogeneous poisson process we need to make the substitution

λt → Λ(t) =
∫ t

−∞
λ(τ)dτ (3.4)

3.2.1 Quantum Efficiency

With these preliminaries, we can begin to understand how to characterize the

performance of the JPM. There are two kinds of experiments we can perform on



46

the photon counter. For both, we will assume the JPM is turned on for a fixed

amount of time t.The first is to measure switching probability with no photons,

the dark probability Pd. The second is to measure the switching probability for a

fixed incident photon flux, which we will refer to as the bright probability Pb. For

a perfect detector which always switches given a photon and using Equation 3.3,

these two quantities are related by:

Pb = (1 − e−λt) + e−λtPd (3.5)

An imperfect detector can be characterized through its quantum efficiency η: the

fraction of photons which cause a detection event. This can be thought of as an

absorber in front of an ideal detector that reduces the incident photon flux to ηλ.

Therefore, the bright probability for a real detector will be given by:

Pb = (1 − e−ηλt) + e−ηλtPd (3.6)

Or, solving for the quantum efficiency:

η = 1
λt

log
(1 − Pd

1 − Pb

)
(3.7)

If we know the number of photons which arrive at the junction, by measuring

both the bright and dark switching probabilities we can determine the quantum

efficiency of the counter. It is important to note that this measurement of the

quantum efficiency cannot distinguish between the quantum efficiency that is
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intrinsic to the detector and any photon loss that occurs before the detector (for

example, because of loss in cabling). The measured quantum efficiency is the

product of detector quantum efficiency and all other losses in the system:

ηmeas. = ηdet.ηcableηisolatorηrelay��� (3.8)

3.2.2 Contrast

The quantum efficiency is a useful number that is a standard way of parametriz-

ing the performance of a general-purpose photon detecting circuit. Typical numbers

for optical detectors range from η = 0�1 for quantum dot-based detectors to η = 0�9

or greater for photomultiplier tubes or superconducting transition edge sensors

[59]. For the specific case of superconducting qubit readout considered in this

thesis, however, we are interested in the fidelity of the readout process. The overall

readout fidelity F can be thought of as the probability of correctly identifying the

state of the qubit [50]. This can be written as:

F = 1 − P (|1〉 | |0〉) − P (|0〉 | |1〉) (3.9)

where P (|1〉 | |0〉) is the conditional probability for measuring the qubit in |1〉 when

it was prepared to be in |0〉. Of course, this quantity depends on the accuracy of

the qubit state preparation, the suppression of unwanted transitions between states

either by thermal excitation or relaxation. The improvement of this overall system

fidelity has been a major effort in the quest to build a universal quantum computer
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[76]. Setting aside for now the problem of state preparation and the mapping from

qubit state to photon number, which we discuss later, consider the case where a

qubit in the ground state leads to no photons reaching the JPM, and a qubit in the

excited state leads to many photons reaching the resonator. We will discuss how

this can be approximated using a special readout cavity drive protocol in a later

chapter; one can also imagine implementing this type of readout using a tunable

coupler between the qubit and JPM [132, 153, 53]. In this case, the fidelity of the

JPM readout is the difference between the bright and dark switching probabilities.

We call this quantity the contrast:

C = Pd − Pb (3.10)

and this is the keymetric for determining the suitability of the JPM for qubit readout

in a cQED architecture.

3.2.3 Optimizing Contrast

Let us assume that the dark switching probability is exponential in time, with

time constant Γ0. The contrast can therefore be written as:

C = e−Γ0t
(
1 − e−ηλt

)
(3.11)
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For any JPM "on" time t, we have the relation C(t) ≤ Cmax; the maximum contrast

possible for a given α is plotted in Figure 3.3. Since Cmax is a monotonically increas-

ing function of α, it is a good figure of merit for the photon counter. This shows

that there are three pathways to improving the performance of the JPM for qubit

readout: increasing quantum efficiency, increasing the flux of photons that reaches

the JPM during a measurement, or decreasing the dark count rate.

3.2.4 Noise Equivalent Power

The JPM is not a photon number resolving detector; in manyways, it is similar to

optical avalanche photodiodes operating in Geiger mode [121]. To measure incident

power, the JPM needs to make repeated measurements from which one can infer

the photon number. To this end, and to facilitate comparison between the JPM and

more traditional photon counters, in this section we calculate the noise equivalent

power (NEP) of the device. NEP is a measure of photodetector sensitivity, and is

defined as the power that gives a signal to noise ration of one in a given bandwidth

[59].

We assume we take N repeated measurements of the JPM, with each measure-

ment taking a time T . For small input powers, the probability of bright switching

during a measurement is given by:

Pb = η
Pint

�ω
(3.15)
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where the input power is defined by

Pin = �ωλ (3.16)

It is important to note that as discussed above the JPM has some dead time T

between measurements such that t 
= T . The number of bright switches is therefore

Nb = NPb with fluctuation ΔNb =
√
NPb. The total fluctuation is:

ΔN =
√

(ΔNb)2 + (ΔNd)2 (3.17)

where Nd = NPd is the number of dark switches (i.e. switches with no radiation

applied). The NEP is derived by calculating the input power necessary to produce

ΔN switches in N measurements2:

ΔN = NEP
ηt

�ω
N (3.18)

Solving for the noise power, and setting the contribution from signal shot noise

equal to zero to find the minimum detectable power we find:

NEP = �ω

η

√
Pd

Nt2
(3.19)

Note that Pd ≈ Γ0t and that the number of switching events can be related to

the detection bandwidth B = 1/2T , so that the noise equivalent power per unit

2A signal to noise ratio of 1.
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bandwidth is:

NEP = �ω

η

√
2Γ0

t/T

[
W/Hz1/2

]
(3.20)

For a reasonable set of parameters ω/2π = 5GHz, η = 0�05, Γ0 = 1MHz, t = 100ns

and T = 1ms, we calculate for the JPM a NEP of 9 × 10−18 W/Hz1/2. This is similar

performance to millimeter wave detectors operating in the Ka-band [123] orW band

[163] and compares favorably with superconducting kinetic inductance detectors

operating in the infrared [90].

3.3 JPM Input-Output Theory

3.3.1 Model Lagrangian

Figure 3.4: JPM coupled to transmission line for input-output theory analysis.

To better understand the optimization of the JPM, we now turn to studying the

device using quantum input output theory. The material in this section was largely

worked out by Marius Schöndorf [130]. As a model system, we consider a JPM

directly connected to a semi-infinite transmission line of characteristic impedance

Z0, as diagrammed in Figure 3.4. The small current from the transmission line ΔI
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couples to the phase of the junction, with a system Lagrangian:

L = LTL + EJ cos δ + (Ib + ΔI)
(

Φ0

2π

)
δ (3.21)

where LTL is the Lagrangian of the transmission line [72]. By following the quanti-

zation procedure outlined in section 2.1, we can rewrite the variables appearing in

3.21 in terms of the raising and lowering operators for the cavity field and the JPM

states3:

ΔI =
√

�ω0

4πZ0

(
â†(ω) + â(ω)

)
(3.22)

δ = 1√
2

(2EC

EJ

)1/4 (
σ̂† + σ̂

)
(3.23)

Using the rotating wave approximation [112], the interaction portion of the hamil-

tonian can be re-written as:

Hint = �g
∫ ∞

−∞
dω

(
â†(ω)σ̂ + â(ω)σ̂†) (3.24)

3.3.2 Rates and Levels

We model the system as a harmonic oscillator (the transmission line) coupled

to a two level system which can tunnel to a fictitious third "dark" state |m〉 that
represents the junction switching to the voltage state. A similar model was consid-

ered numerically by Poudel et al. in [115], with the difference that they consider a

3In this section, we assume that the JPM only has two levels.
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Figure 3.5: JPM levels and rates for the input output theory analysis.

junction capacitively coupled to a transmission line which populated with a fixed

number of photons. What they call quantum efficiency is actually contrast, and al-

though they use unrealistically long junction coherence times they report C > 80%

for a single photon in the cavity.

There are four relevant rates in this problem:

• Γe and Γg, the tunneling rates to the voltage state

• ΓTL, the excitation rate caused by incident microwaves

• Γr, the relaxation rate for the junction

The coupling between transmission line and JPM is

g =
√
ω0ZJ

8πZ0
(3.25)

whereZJ = 1/ωpCJ is the junction impedance. This can be rewritten as the coupling
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rate to the transmission line

ΓTL = 2πg2

= 1
4
ω0ZJ

Z0
(3.26)

= 1
4
ω0

ωp

ReY0

CJ

with Y0 ≡ 1/Z0 the admittance of the transmission line. This last line is suggestive,

as ΓTL takes the same form as the effect of dissipation from an arbitrary impedance

Y (ω) on a quantum system, which is given by [23, 37, 103]:

Γ ∝ ReY (ω)
C

(3.27)

We can also use this expression to model the inelastic relaxation rate of the junction

caused by its environment. The relevant admittance seen by the junction is that at

its transition frequency:

Γr = ReY (ωeg)
CJ

(3.28)

We calculate the tunneling rates and JPM transition frequency using the complex

scaling method discussed in appendix A.
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3.3.3 Reflection Coefficient

By using the quantum Langevin equation [82], it is possible to write down the

time derivatives of the JPM state operators:

∂σ̂

∂t
= −

(
iω0 + ΓTL + Γe

2

)
σ̂(t) +

√
ΓTLai(t)σ̂z(t) (3.29)

σ(t) = âi(t) + âo(t)√
ΓTL

(3.30)

The input and output operators âi and âo are defined by the relations:

âi = − i√
2π

∫ ∞

−∞
dωe−iωtâ(ω) (3.31)

âo = − i√
2π

∫ ∞

−∞
dωe−iω(t−t1)â(ω), t1 > t (3.32)

Equation 3.29 is not in general solvable because of the nonlinear coupling between

the qubit state and the photon field. Instead, we approximate σ̂z by its expectation

value

σ̂z ≈ Pg − Pe (3.33)

Using eq. (3.30) and eq. (3.33) in eq. (3.29), we derive the reflection coefficient for

the junction which relates input and output modes:

R(ω) = −
ΓTL+Γe

2 − ΓTL(Pg − Pe) − i(ω − ω0)
ΓTL+Γe

2 − i(ω − ω0)
(3.34)
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The complete solution for a non-resonant drive and including inelastic relaxation

reads:

η =
ΓTL

(
1 + Γg

ΓTL+Γe+Γr

)
(Γe − Γg)

1
4(ΓTL + Γe + Γg + Γr)2 + (ω − ω0)2 (3.36)

This expression is plotted in Figure 3.6.

Setting the detuning ω − ω0 = 0 this has a maximum for coupling to the trans-

mission line at:

Γmax
TL =

√
(Γe + Γr)(Γe + Γg + Γr) (3.37)

We know that Γe � Γg, so this condition amounts to Γmax
TL = Γe + Γr. Thinking

of the tunneling to the voltage state from the excited state as being caused by a

fictitious resistance RT = 1/ΓeCJ , this amounts to a matching condition:

1
ZTLCJ

= Γe + Γr (3.38)

Since the coupling is set by the impedance of the input transmission line, this

is a quantum mechanical equivalent of a condition for the maximum transfer of

energy to the JPM.Perhaps unsurprisingly, to maximize the quantum efficiency

of the detector we need to match the 50 Ω impedance of the transmission line to

impedance of the junction, which we accomplish using a simple LC matching

network. The calculated η for a particular value of Γg is plotted in Figure 3.7, which

also shows the optimal input coupling rate. A complication arises in the fact that

ΓTL and Γr are not independent; they both are determined by the impedance of

the matching network4. We choose an input matching network impedance that

4The additonal 50 Ω from the bias line appears in parallel and is negligible.
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transforms the transmission line impedance toZ0 ≈ 1 Ω, whichmaximises efficiency.

The rates for such a matching network input are plotted in Figure 3.8, with the

quantum efficiency plotted in Figure 3.9. This shows that it should be possible to

acheive quantum efficiencies on the order of 10% for dark rates of a few megahertz.

Finally, we plot the expected contrast (bright switching minus dark switching)

for a JPM active time of 100ns during which 50 photons arrive at the junction in

Figure 3.10. Based on the input-output theory formulated in this section, we expect

to be able to achieve raw contrasts of greater than 90% for this type of drive.

Figure 3.7: Calculated quantum efficiency η vs. relaxation rate and input coupling
rate ΓTL for ω0/2π = 5GHz, detuning Δ = 0 and Γg = 5MHz. The optimum input
coupling is shown as a solid line, while the realizable values of input coupling are
shown as a dashed line.
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Figure 3.10: Plot of contrast C = Pb − Pd vs. ground state tunneling rate Γg and
input frequency ω/2π. Parameters are the same as for Figure 3.8, for a JPM on time
of 100ns and 50 incident photons.
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4 jpm fabrication and measurement techniques

One of the major advantages of the Josephson photomultiplier compared to the

traditional microwave amplifiers described in the Introduction is the simplicity of

its design. As an illustration of this fact, the SLUG amplifier’s fabrication requires

8 rounds of photolithography [64, 66], compared to only 3 for the JPM design

described in this thesis. This simple, single-junction design is also inherently

compact, eliminating the need for large resonant structures such as those found

in many types of parametric amplifiers; for instance, the TWPA amplifier [157,

96] needs several thousand sub-micron junctions and occupies the majority of a

standard silicon die. A final advantage compared to amplifiers used for heterodyne

measurement is the simplicity of the room-temperature electronics needed to read

out the JPM. A simple voltage comparator1 is all that is needed to detect the large

transient caused by the junction switching to the voltage state. As we will discuss

in the final chapter of this thesis, this also presents interesting opportunities for

integration with cryogenic quantum control electronics.

In this chapter we will describe the fabrication process used to make the JPM

using standard photolithographic thin-film techniques and the design choices we

made when fabricating these devices. We will then describe the measurement

set-up for JPM experiments, including the wiring of cryogenic refrigerators, the

room-temperature electronics used to control and read-out the JPM, and our custom

measurement software setup.

1Our collaborators at SyracuseUniversity have even implemented this using discrete components
read out with a cheap Arduino board connected via USB.
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4.1 Thin Film Fabrication Techniques

The Josephson photomultipliers described in this thesis were fabricated us-

ing thin film microfabrication tools in both the McDermott Lab and at the Wis-

consin Center for Applied Microelectronics (WCAM), the shared cleanroom at

UW-Madison. In this section, we will describe the individual steps used in JPM

fabrication.

4.1.1 Photolithography

The common thread that unites all of the thin film processing steps that we use

to fabricate the JPM is photolithography using the Nikon i-line stepper at WCAM.

This production-grade tool2 uses a massive lens to do projection lithography using

a quartz reticle. Features on the mask are drawn in chrome, and reduced in size

5x on the wafer where the light from a mercury vapor lamp exposes photoresist.

We use Megapost SPR 955-CM resist, which allows us to write lines down to 0�5μm

with overlay accuracy of better than 100nm. The main advantage of using a stepper

to do lithography instead of a contact mask system is that we can arrange many

different variations of a circuit onto the same wafer by programming what features

get exposed on an individual die.

After the wafer is cleaned using acetone and isopropanol, the resist is spun

onto the wafer at 3500 rpm for 30 s, leaving a 0�9μm-thick film. Solvents in the

resist are removed with a 95 ◦C pre-bake for 1min. The stepper exposes the resist

2Used, apparently, to expose Pentium I processors at Intel.
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for approximately3 290ms, and we perform a 1min post-exposure bake at 110 ◦C.

Finally, the resist is developed by agitating the wafer in Megaposit MF-24A for 60 s.

Since SPR-955 is a positive resist, areas that were exposed to light are removed by

the developer. Care needs to be taken when developing resist over aluminum, as

MF-24A etches it slowly.

4.1.2 Aluminum Deposition and Etch

To deposit the superconducting metal thin films used in all of the devices fabri-

cated in the McDermott Lab, the primary system we use is the Kurt J Lesker sputter-

ing system. This commercial tool is set up for DC sputtering using magnetron-type

sputter sources, and is currently configured with both niobium and aluminum

targets. The chamber also features an argon ion mill for surface cleaning and metal

oxide removal in situ. The system is brought to high vacuum using a closed cycle

refrigerator cryopump, typically achieving base pressures around 1 × 10−8 torr.

Samples (pieces, 2" diameter wafers, or 3" wafers) are cleaned with dry nitrogen

and clamped to an aluminum platen with an indium O-ring for heat-sinking. The

heat load on the samples is relatively high, and the indium O-ring is vital to ensure

the growth of high-quality films that are free of defects. The wafer chuck is inserted

into the chamber using a load-lock and screwed into a rotating arm that provides

sample rotation and repositioning, allowing the user to ion mill and deposit either

kind of metal in a single use.

The first step before depositing an aluminum film is to clean the surface using

3The exact length of time is determined by the age of the stepper lamp, and must be calibrated.
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the ion mill, which uses a physical etch process. This is important to both remove

the thermal oxide layer on the silicon wafers before growing the bottom electrode of

the JPM, and to clear the natural oxide layer that forms on aluminumwhen exposed

to atmosphere. Removing this oxide allows for good metal to metal contact when

growing junctions on top of the base aluminum. The mill ionizes argon gas using

a hot cathode filament, and argon ions are accelerated using a grid system that is

biased with a large voltage. On impact with the sample, the ions have sufficient

energy to knock atoms off the surface. We operate the ion mill in the Lesker system

at an argon pressure of 2 × 10−4 torr, a bias voltage of 800V and a beam current of

20mA. These parameters result in a measured etch rate of 1nm/s for aluminum

and 1�5nm/s for silicon oxide. The etch rate is important to take into account when

designing features which rely on a certain thickness of material, for example overlap

(parallel-plate) capacitors. We etch samples for 20 s, which is enough of an over-etch

to ensure complete oxide removal, although this does roughen the surface. While

not an important consideration for the relatively simple JPM fabrication, this can

be a concern for more complicated multi-layer devices such as SLUGs and qubits.

Once the surface is clean, we proceed to aluminum deposition using magnetron

sputtering. In this process, energetic ions from a magnetically confined argon

plasma dislodge aluminum atoms from the target, which then coat the sample. It is

important to rotate the sample during sputtering to ensure uniform film thickness

across the sample wafer. Since we are sputtering metals in the Lesker system, we

can use a power regulated DC source to create the plasma4. The deposition is a

4Dielectric targets are susceptible to charge build-up, and must be sputtered using an RF source.
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two-step process. First, the target is cleaned using a 200W plasma for 2min, with a

closed shutter placed right in front of the target. The plasma power is then reduced

to 110W and the shutter opened to begin sputtering. We use a constant argon

pressure of 5mTorr, which results in slightly compressive films and a deposition

rate of 10nm/min.

Once lithography has been performed on the aluminum film, it is wet etched

using Transene Type A aluminum etchant. The etchant is heated to 50 ◦C, which gives

an etch rate of 10nm/s. As wet etching is isotropic, it must be closely monitored

to prevent any undercutting where the aluminum underneath the resist is etched

near the edge of features. While not as repeatable as a dry metal etch, wet etching

is simple, robust, and produces a gentle edge slope which alleviates step-coverage

issues. After etching, the resist is stripped by sonicating the wafer in an acetone

bath.

4.1.3 Silicon Oxide Deposition

Chamber Pressure 900mTorr

Temperature 250 ◦C
RF Power 25W

Gas Flows
N2O 900 sccm

2% SiH4 in N2 400 sccm

Table 4.1: PT70 SiOx deposition recipe.

The dielectric used in the JPM is a conventional silicon oxide (SiOx) grown using

plasma-enhanced chemical vapor deposition (PECVD) at WCAM. PECVD uses

gas-phase chemical reactions catalyzed by an RF plasmawhose products precipitate
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on a sample to grow a thin film of material. The sample is heated to increase film

quality by reducing surface roughness and pinhole formation. The PECVD process

parameters for the Plasmatherm PT70 system at WCAM are listed in Table 4.1. Using

this recipe, the typical deposition rates are 30−40nm/min. Since the JPMmatching

network uses a large parallel-plate capacitor whose thickness must be conrolled to

set the frequency of JPMoperation, wemonitor the deposition rate using bare silicon

witness chips placed in the chamber alongside the sample wafer. The thickness of

silicon oxide on the witness dies can then be measured extremely accurately using

an optical reflectometer. After deposition and lithography, the oxide is etched using

Chamber Pressure 100mTorr

RF Power 150W

Gas Flows
CHF3 50 sccm
O2 20 sccm

Table 4.2: SiOx RIE recipe.

a reactive ion etch (RIE) in the WCAM Unaxis 790 chamber. This processes uses a

chemically reactive plasma containing fluorine to etch the sample. The recipe we

use is listed in Table 4.2, and it etches silicon oxide at 30nm/min. Aluminum acts

as an excellent etch stop, so we typically over-etch by 50%. Lithography on SiOx is

nearly identical to that on metal with two important differences. Before resist is

spun on, the wafer is coated with hexamethyldisilazane (HMDS) and baked in a

vacuum. The HMDS promotes resist adhesion during subsequent processing steps.

After the resist post-exposure bake, we bake the resist for an additional 3min at

130 ◦C. This causes the resist to thermally flow, producing a 45-degree edge slope.

The RIE etches the oxide at the same rate as the resist, so that this slope is transferred
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and current bias to the junction. The oxide is grown in our Lesker sputtering

system, and we again use the ion mill for 20 s to clean any native oxide off of the

aluminum ground plane. A clean interface between metal and oxide is critical to

achieving reliable and repeatable junction critical current density. Once the mill

is complete, oxygen is flowed into the chamber at 1mTorr for 2min to seed the

formation of the tunnel barrier. The cryopump gate valve is then closed and the

chamber pressure is allowed to rise to the target value for junction oxidation, where

it remains for 10min. Following the oxidation, the aluminum counter-electrode

is grown using the procedure outlined above. Unfortunately, the junction growth

is the most variable part of the fabrication process. The critical current density Jc

(critical current per unit area) reached for a given chamber pressure depends on the

chamber’s history, so two wafers fabricated a few days apart may not have the same

Jc. However, for two junction growths close together in time the critical current

density scales inversely with the square root of the product of oxygen pressure

and time (also referred to as the exposure) [79]. We therefore typically process two

wafers in parallel, expose the junctions on one wafer and measure their critical

current density using Equation 2.17, and then use that data to correct the exposure

of the second wafer to reach the target Jc. For the JPM target critical current density

of 35A/cm2, the oxygen pressure in the chamber is approximately 300mTorr.

4.1.5 JPM Fabrication

The JPM fabrication process consists of three layers processed in WCAM and

the McDermott Lab using the techniques described above: the base electrode, the
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pains to minimize this return inductance, as it can be a significant contribution

to designed inductances. Additionally, cuts in the ground plane such as the slot

formed by the coplanar waveguide input and output lines, or around wire bond

pads, can lead to unwanted microwave resonances on the chip (so-called chip

modes). To minimize these effects, the two halves of the ground plane are tied

together using crossovers that pass underneath the coplanar waveguide center

(CPW) trace.

Dielectric and Vias

The silicon oxide dielectric is grown to be 120nm thick and etched using the

CHF3 RIE described above. The matching network capacitor to ground is of the

parallel plate type, with the SiOx having a dielectric constant εr = 3�9. The design

of the capacitors takes into account the 20nm extra etch that will be caused by the

ion mill step before the junction is grown. The JPM via is octagonal, and in this

step additional test junction vias are opened in test structures near the edge of the

die for room-temperature junction resistance measurement. The dielectric covers

the whole chip, so it must also be etched away over the ground plane near the edge

of the die so that ground wirebonds can be made. These open areas will form large

parasitic vias in the subsequent step, but they are so large that their critical current

will never be exceeded and they will never switch to the voltage state.
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Junction and Counter-Electrode

The final thin-film processing step is the growth of the Josephson junction and

the deposition of the 100nm thick counter electrode (CE). This is the layer that

carries the input and output signals to and from the JPMs through 50 Ω coplanar

waveguide transmission lines. One particularity of our JPM design is that the CPWs’

center trace is formed in the CE layer, making it not strictly coplanar. However, as

the dielectric thickness is much smaller than the lateral dimensions of the coplanar

waveguide (18μm center trace and 10μm gaps) this is not a significant correction.

On the other hand, the distributed capacitance of the crossovers has to be taken

into account and corrected for when choosing the CPW dimensions.

The other crucial feature made in the CE layer is the series inductor in the input

matching network. This is formed using a thinner 3μm trace over a cavity in the

ground plane. There are three contributions to this inductance that must be taken

into account. The first is the geometric inductance of the thin trace, which can

be calculated using the standard expressions for CPW with a large ground plane

gap [135]. For the JPM geometry, this is 1pH/μm. There is also a contribution

from the kinetic inductance of the superconducting trace. This inductance can be

approximated using the expression:

LK = μ0λ
2 �

wt
(4.1)

where λ = 100nm is the penetration depth, � is the length of the trace and w and t

are the width and thickness of the trace. For the JPM, this expression shows that
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circuit board traces and the chip, they are recessed and level with the box ground

plane. The chip is thermalized through gold wirebonds that are made from the

copper printed circuit board traces to the input and output pads; since they are

normal metal, they have high thermal conductivity unlike the aluminum bonds

which superconduct below 1K. A bonded sample can be seen in Figure 4.4. This is

the same technique we use to mount transmon chips, with the difference that we

do not thermalize the chips through gold bonds as gold cannot be wedge bonded

to aluminum at room temperature.

4.2 JPM Design Choices

The target frequency for JPM operation was chosen as 5GHz, a good com-

promise between achievable junction plasma frequency ωp and transmon readout

resonator frequency. We chose to work with large junctions; as noted in the discus-

sion in the preceding chapter, we want the inelastic relaxation rate of junction to be

on the same order as the tunneling rate from the first excited state. This rate is set

by Γin = 1/Z0CJ , where Z0 ≈ 50 Ω is the environmental impedance of the junction5.

The capacitance CJ of a junction is set by its area, which for our process is roughly

50 fF/μm2. Therefore, we chose a junction area of 500μm2 giving a capacitance of

5pF. Using Equation 2.22 to determine ωp, the required critical current density is

∼ 40A/cm2. From the relation

ωp = 1√
LJCJ

(4.2)

5Specifically, this is the dissipation due to the output bias line.
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To validate the above model, we chose to test the performance of the matching

network using a mock-up of the junction. This consisted of a matching network

circuit of identical layout to that used in the JPM, with the junction replaced by

a thin normal-metal resistor. The 30nm thick palladium resistor, grown in our

electron-beam evaporator after an ion mill step to ensure good metallic contact, has

a resistance of 1 Ω, matching the junction tunneling resistance. A micrograph of

this test structure is shown in Figure 4.6. The test chip was made using niobium

instead of aluminum for the ground plane and counter-electrode. Niobium has

a critical temperature Tc ≈ 9K [140], so we were able to measure the reflection

coefficient of the circuit using a simple dip probe set-up in liquid helium at 4K.

The results of this measurement are shown in Figure 4.7, and are compared to the

expected ML based on the design value of capacitance and inductance. It is clear

that the response frequency and minimum reflection coefficient of the fabricated

circuit correspond closely to the expected value, reassuring us that there are no

other large parasitics that could degrade the microwave transmission at the input

of the JPM.
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experiments, is the Leiden Cryogenics dilution refrigerator, a dry fridge6 which offers

600μW of cooling power at 120mK and typically achieves a base temperature of

12mK.

4.3.1 Cold Wiring

The qubits and JPMs are heatsunk to the cold stage of the refrigerator, and con-

nected to the outside world through heavily attenuated and filtered microwave and

DC control lines. Considerable care needs to be taken when wiring an experiment

into either an ADR or DR to avoid heat leaks through wiring and excessive thermal

radiation from warmer stages of the fridge. This requires extensive heat-sinking

of wiring at all intermediate temperature stages, as well as the heat-sinking of

attenuators, filters, and all other components in the signal chain. This is especially

crucial for qubit experiments, as infrared radiation is able to break quasiparticle

pairs in the superconducting metal on the device chip which lead to excess |1〉 state
population [154]. We mitigated this problem by clamping all cold attenuators, and

inserting commercial K&L Microwave 12GHz low-pass filters before and after the

qubit in the measurement chain. Additonally, to suppress noise due to magnetic

fields and prevent the critical current of the relatively large area JPM junction from

being suppressed due to magnetic fields, the JPM and qubit boxes are enclosed in

high-permeability mu-metal magnetic shielding. A schematic of the wiring is show

in Figure 4.8.

Microwave drive lines are heavily attenuated at both the 4K stage and the

6This eliminates the need for repetitive and annoying cryogen transfers.
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base temperature stage using commercial SMA attenuators. The output noise

temperature of a microwave attenuator of attenuation A at physical temperature Ta

with input noise Tin is given by [116]:

Tout = Tin + Ta

A
(4.4)

Therefore, with 50dB of total attenuation, the 300K noise from the room temper-

ature electronics will be attenuated to 3mK at the qubit input. DC bias lines are

filtered using a lowpass LC filter at the 4K stage made by inserting a wirewound

axial resistor into a brass block7, which also acts as a current source for the low-

impedance JPM bias and qubit flux bias. These lines are further attenuated using a

copper powder filter (CPF) [14] to thermalize the lines and prevent any microwave

feedthrough to the JPM or qubit from the bias circuitry. For the JPM, since the

fast DACs used to quickly pulse the junction potential into resonance with the

microwave field cannot source enough current to properly bias the junction, the fast

pulse current bias is summed with a slower DC bias using a homemade bias tee.

The qubit and the JPMs are connected through two 6-position microwave relays,

which allow for different devices to be connected without having to open the fridge.

This also allows us to separately characterize the JPMs using an input calibration

microwave line, and characterize the qubits using a heterodyne measurement with

a cryogenic high electron mobility transistor (HEMT) amplifier, which has 30dB of

gain.

7The capacitance comes from the coaxial capacitance between the resistor and the channel
drilled into the brass, which is at ground.
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4.3.2 Room-Temperature Electronics

The room temperature electronics which control and read out the experiment

are diagrammed in Figure 4.9. The cornerstone of the measurement set-up is a

custom electronics rack based on circuits developed by the Martinis group at UCSB

[3, 77]. The microwave portion of the rack consists of two two-channel 14-bit,

1GHz digital to analog converters (DACs) for arbitrary waveform generation, and

a dual channel 8-bit 250MHz analog to digital converter (ADC) for heterodyne

qubit measurement. For JPM control, the DACs also provide the fast current pulse

that sets the washboard potential slope. Because they cannot source a sufficient

amount of current to get to 90% of Ic, we also use a slower DAC that operates on

microsecond timescales to pre-bias the JPM. The JPM itself is read out using a zero-

referenced comparator circuit which has a pre-amplifier with a gain of 1000. All of

these elements can share trigger information to synchronize their operation, and are

controlled and read back over an ethernet interface. For qubit operations, the control

and readout signals are modulated using I/Q quadrature mixers. This allows us

to control the duration, shape and amplitude of these pulses with nanosecond

precision. A microwave signal is applied to the LO port of the mixers, while the

DAC controls the voltage at the I and Q ports, giving an output signal [116]:

VRF(t) = I(t) sin (ωLOt) +Q(t) cos (ωLOt) (4.5)
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Figure 4.9: Diagram of the room temperature electronics used to control the qubit,
and read it out using both heterodyne and JPM techniques.
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By applying low frequency sine and cosine signals at a sideband frequency fSB to

the quadrature ports, an output signal at fLO − fSB will be generated8. The output

signal is read out using homodyne detection using the same LO oscillator as the

readout drive. The amplified signal from the fridge is downconverted by a mixer,

and the two quadrature components digitized by theADC. TheADC is able to either

record I(t) and Q(t) for later demodulation in software, or use its onboard FPGA

to demodulate and pick out the signal at the sideband frequency. The qubit drive

signal is generated in a similar fashion, and teed into the qubit readout resonator

input port using a 3dB commercial Wilkinson power divider at room temperature.

For convenience, we use USB-controlled LabBrick attenuators to set the appropriate

readout and qubit control microwave powers. While convenient, we have noticed

that these attenuators generate a considerable amount of digital switching noise,

so it is important to use a copious amount of DC blocks and low pass filters in

the microwave signal chain, especially before and after the attenuators. In general,

since the JPM is a DC device, one must take great care to hunt down and eliminate

any ground loops in the measurement set-up, as well as heavily filter control lines

and short those which are not in use.

4.3.3 Measurement Software

The data acquisition software used to read out the electronics controlling the

qubit and JPM is diagrammed in Figure 4.10. The centerpiece is custom codewritten

in the Python language that accepts input from the user in the form of a Python

8With some leak through at fLO + fSB and fLO which can be filtered out.
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Figure 4.10: Schematic of the measurement control and data-acquisition software.
Arrows indicate flow of controls and data.

script that specifies the type of measurement that is to be conducted, automatically

assigns variables to the appropriate instrument, and organizes and saves sweep

data to the UW-Madison network attached storage for later analysis. Our hardware

interface has been greatly simplified by standardizing on the LabRAD protocol,

which uses a distributed, asynchronous framework for instrument control and data

acquisition. More information about LabRAD can be found in Markus Ansmann’s

thesis [3] or on the LabRAD github page9.

The simple, binary output of the JPM-qubit measurement results made manual

9https://github.com/labrad
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optimization of the readout parameters tedious, especially as we often had to adjust

both JPM and qubit parameters at the same time. For example, to optimize the

JPM readout fidelity requires the fine tuning of 9 parameters. Two describe the

state of the JPM: the junction bias current and the amount of time it is left in the

active, shallow-well state. Seven more describe the readout process itself: the

duration, amplitude and frequency of the readout cavity drive and qubit π pulses,

and the relative delay between the JPM bias pulse and the cavity readout. To avoid

lengthy scans over all of these parameters, many of which depend on each other,

we turned to the methods of numerical optimization to more efficiently sample

the experimental parameter space. We used the Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) algorithm to optimize for maximum readout contrast

in our measurement. CMA-ES is an advantageous algorithm as it is fast, robust

against noise, and requires no knowledge of the underlying function that is being

optimized or its derivatives. While a description of this evolutionary algorithm is

beyond the scope of this work, the reader is referred to the tutorial by Hansen [61].

It remains to be seen whether for the JPM readout optimization using CMA-ES is

the best algorithm out of the class of derivative-free optimization algorithms for

multivariate noisy functions.
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curve when cooled to well below the 1K, the transition temperature of aluminum.

We do this via a three-wire measurement through the two bias resistors that are

teed together at the 4K stage of the refrigerator. A typical IV curve is plotted in

Figure 5.1, showing the characteristic structure of a Josephson junction IV with

both supercurrent and normal branches. The critical current of the junction can be

computed from the slope of the normal branch and the relation

Ic = π

4
2Δ
e

1
RN

(5.1)

which for this junction gives a critical current of Ic = 195μA or a critical current

density of Jc = 39A/cm2. Note also that the sub-gap resistance is large, indicating

a high-quality tunnel barrier.

5.2 Microwave Measurements

5.2.1 Bias Pulse Sequence

After checking that the junction has survived the fabrication process, and has the

correct critical current density, the next step in bringing up the JPM measurement

is determining the correct bias amplitudes for both the fast and slow bias. The

pulse sequence that is used in JPM operation is shown in Figure 5.2. Using the slow

bias line, we first pulse the JPM bias current to a value IB ≈ 0�9Ic for a duration

tB = 100μs. This is a purely technical necessity, as theDAC that supplies the fast bias

cannot source enough current to bias the junction to the correct level. After this pre-
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Time

RF

Slow Bias

Fast Bias

Figure 5.2: Timing diagram for bias pulses used in JPM operation, showing the fast
bias, slow bias, and RF drive lines. This diagram shows a pulsed RF measurement;
the same JPM bias pulse sequence is used during a CW microwave measurement.

biasing, the fast bias sends down a short current pulse of duration tFP ≈ 10 − 100ns

of amplitude FPA (Fast Pulse Amplitude) which brings the JPM into resonance

with the incident microwave field. During this pulse and for a period of time

tM = 5μs following it, the comparator circuitry measures the junction voltage for

a JPM switching event. The slow bias current is then brought back to 0 to reset

the junction, and we wait a time tinit ∼ 500μs before the next measurement. For a

pulsed RF measurement, we can also vary the duration of the RF pulse and the

delay between the RF pulse and the fast pulse. Alternatively, we can also perform

a continuous wave microwave measurement where the junction is continuously
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irradiated by incident photons.

5.2.2 S-Curves

Since the amount bywhich the fast pulse is attenuated as it travels to the junction

is not perfectly known, we set the fast pulse amplitude by measuring switching

probability as a function of fast pulse amplitude with no applied RF drive. We

call the resulting curve, plotted in Figure 5.3a, the S-curve for the junction. We use

these curves to set a bias which gives a dark switching probability of around 10%,

which corresponds to dark tunneling rates Γd ≈ Pd/tFP ∼ 5MHz for tFP = 20ns, a

reasonable operating point. This setting is typically stable from day to day, although

we have found we need to recalibrate it occasionally, especially if we make any

modifications to the room temperature electronics. These changes are likely caused

by small changes in DC offsets in the measurement set-up. We have found that

the JPM switching probability is especially sensitive to these, and they must be

ruthlessly eliminated.
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5.2.3 Error on JPM Measurements

A quick note on the calculation of errors for measurements with the JPM. Since

the result of a JPM measurement is binary, either a switch or no switch, the errors

can be calculated from the binomial distribution. Since the number of repetitions is

large (typically N ≈ 2000 or more), it is appropriate to approximate the error with

the normal distribution [139] and we write for the standard deviation:

σ =
√
P (1 − P )

N
(5.2)

where P is the measured switching probability. Following the usual rules for

propagation of uncertainty, the errors in contrast and quantum efficiency are given

by:

σC =
√
σ2

b + σ2
d (5.3)

σ2
η = 1

nphoton

(
σ2

b

(1 − Pb)2 + σ2
d

(1 − Pd)2

)
(5.4)

The error bars for the results plotted in this thesis represent a 95% confidence

interval from 1�96σ.

5.2.4 Initialization Time

We find that the time between experimental repetitions, which we term the

"initialization time" tinit has a large effect on themeasured switching probability. The

effect of increasing increasing initialization onmeasured dark switching probability
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5.2.5 RF Response

Once a good operating point for the JPM fast pulse amplitude has been deter-

mined by measuring the dark S-curve, we can begin to measure its response to a

microwave drive. Typically we begin by applying a continuous drive instead of

modulating the RF to simplify the initial experiments, although this is not a vital

point. The effect of applying an RF drive can be seen in Figure 5.3a. We see a clear

enhancement of the switching probability, caused by the resonant activation of

the junction state. The corresponding contrast is plotted in Figure 5.3b, reaching

values of over 80%. These measurements, performed through the calibration line,

do not benefit from an accurate calibration of the photon power that is delivered to

the junction. While we can account for explicit loss from the attenuation we have

deliberately inserted into the signal path, as well as that added by other microwave

components the loss due to the normal metal coaxial cable in the fridge cannot be

characterized. Additionally, we do not know the loss from microwave disconti-

nuities, such as that caused by the aluminum wirebond onto the chip [109]. It is

well known that wirebonds add approximately 1nH/mm of excess inductance. At

5GHz, this corresponds to 30 Ω or a reflection coefficient |Γ| = 0�3. Despite this, we

simply use the known attenuation and room temperature drive power to estimate

the photon number at the junction from:

nJPM = P

�ω
tFP (5.5)
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Based on a total attenuation of 100dB, a room temperature drive of 13dBm and a

fast pulse time of 20ns, we estimate that 104 photons are arriving at the JPM during

the time it is active.

The response versus both frequency and bias for a different device is plotted in

Figure 5.5a, for a similar photon number and tFP = 10ns. We see a broad response

centered around 5GHz, which gets broader as the fast pulse amplitude is increased

towards the critical current. This is due to the |g〉 to |e〉 transition being broadened

as the JPM excited state approaches the top of the potential well barrier. As a

comparison, we calculate the junction quantum efficiency using the input output

theory descrited in section 3.3 and from it the contrast using the equation:

C = e−ΓgtFP
(
1 − e−ηnJPM

)
(5.6)

This contrast is plotted in Figure 5.5b, and is in qualitative agreement with the

measured contrast. One significant difference is the presence of notches spaced

by approximately 100MHz in the experimental contrast data. These are likely

due to standing waves in the microwave cabling, due to impedance mismatches.

This illustrates the JPM’s extreme sensitivity to input impedance mentioned in

section 3.3.4. While we take every precaution to minimize any potential source

of mismatch as well as the total length of cable, some level of standing waves is

inevitable unless an attenuator is placed directly on the input connector on the JPM

box. This is not a realistic solution as we cannot afford to lose any photons between

the measured qubit and the JPM.







100

this cavity occupation as a function of drive frequency is straightforward; for more

details, see appendix B. For a drive of strength a0 and length td, the amplitude of

coherent state formed inside the cavity is given by

α(Δ = 0) = −ia0

2 td (5.7)

for zero detuning Δ = ω0 − ωd. For non-zero-detuning, the cavity state is

α(Δ) = − a0

2Δ
(
eiΔtd − 1

)
(5.8)

We measure the cavity state by driving the cavity for a variable time at different

drive detunings, and turning on the JPM measurement at the end of the cavity

drive. The resulting switching probability is plotted in Figure 5.7. The photons in

the cavity leak out towards the JPM at a rate nJPM = ncavκ, where ncav = |α|2 and
κ ≡ 2πΔf . The JPM switching probability is therefore a direct probe of the size of

the coherent state in the cavity. As we expect from eq. (5.8), the number of photons

oscillate sinusoidal at a frequency equal to the cavity-drive detuning. It should be

noted that this data was taken with a photon counter that did not have an input

matching network. Along with the small κ, which limits the rate at which photons

escape from the resonator, we used a large amplitude drive which put on the order

of 104 photons in the cavity.
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5.3 Calibrating Photon Number

In order to accurately estimate the quantum efficiency of the photon counter

and properly benchmark its performance, we need a calibrated source of photons

as close as possible to the JPM. Fortunately, the transmon qubits we are measuring

provide just such a calibrated source. The Jaynes-Cummings Hamiltonian, eq. (2.38)

which descrites the qubit-resonator circuit has an interaction term

Ĥint = �χσ̂zâ
†â (5.9)

This term can be interpreted as a cavity-state dependent shift of the qubit frequency

[16, 17], similar to the atomic Stark shift. By measuring this Stark shift for different

drive powers, we can map from room RF pulse amplitude to cavity occupation.

A separate measurement of the cavity width (or photon decay rate) κ gives us

everything we need to know to calculate the photon flux at the JPM. This technique

is similar to that used in [96] to measure the quantum efficiency of a traveling wave

amplifier.

5.3.1 Stark Shift Measurement

The pulse sequence used for the Stark shift calibration is shown in Figure 5.8. A

long (longer than the cavity decay time to ensure it is in the steady state) pulse is

first applied at the resonator frequency in order to populate the cavity. After this

pulse, we perform a qubit spectroscopy measurement (see section 6.3.2 for more

details) in order to measure the Stark-shifted qubit transition frequency f01.



103

Time

Figure 5.8: Diagram of the Stark shift measurement pulses applied at the cavity
readout ωRO and qubit drive ωQB frequencies.

Once the Stark shift Δf10 = f10(ASS) − f10(ASS = 0) has been extracted, we use

the theory of Boissoneault et al. [18] to extract the cavity occupation. We model the

qubit as a three level system, with a design anharmonicity α = −300MHz. From

the measured low-power qubit chi shift χ0 and the qubit-cavity detuning Δ0, we

can calculate the two Stark and Kerr coefficients [64]:

S0 = −χ0 + 1
4(−χ0λ

2
1 + 3χ1λ

2
0) − g

(2)
0 λ

(2)
0

S1 = χ0(1 − λ2
1) − χ1(1 − λ2

0) − 2χ0λ
2
0

K0 = 1
4(χ0λ

2
1 − 3χ1λ

2
0) − g

(2)
0 λ

(2)
0

K1 = (χ1 − χ0)(λ2
1 + λ2

0)

(5.10)



104

Figure 5.9: Switching probability vs. fQB and ASS, expressed in the output value of
the DAC used to gate the readout IQ mixer, for qubit sample MW072.

where λi = −gi+1,i/Δi, χi = g2
i+1,i/Δi, g

(2)
0 = λ0λ1(Δ1 − Δ0) and λ(2) = −g(2)

0 /(Δ0 +

Δ1). With these coefficients, the shift in the qubit transition frequency is given by:

Δf10/2π = (S1 − S0)ncav + (K1 −K0)n2
cav (5.11)

Since the voltage at the IQ mixer quadrature port controls the amplitude of the

wave, fit the Stark shift using:

ncav = βA2
SS (5.12)

where β is the unknown relation between the readout drive amplitude and cavity

population. The fit for two different qubits (MW072 and MH060)1 is presented in

Figure 5.10, showing good agreementwith the theory. This analysis does incorrectly

1Syracuse University die naming convention.
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determine κ in Figure 5.11. Although the cavity state is not constant during the

JPM active time, λtFP � 1 so the simple exponential assumption is justified.

5.4 Quantum Efficiency Measurement

Using the calibrated photon flux from the previous measurement, we can mea-

sure the quantum efficiency by measuring the bright and dark switching proba-

bilities. We measure the bright switching probability after applying a saturating

pulse to the readout cavity to ensure it is in the steady state, and continue to drive

the cavity during the JPM bias to ensure a constant flux of photons at the JPM.

We plot quantum efficiency versus both fast pulse time and fast pulse amplitude

in Figure 5.12, calculated using Equation 3.7. The area in the upper right of the

plot is where we assign η = 0 because the junction always switches regardless

of the applied microwave drive. This measurement was performed at the qubit

readout resonator frequency of 4�9889GHz, and a photon flux of λ = 1ns−1. To

facilitate comparison with the theory of chapter 3 we fit the measured dark rate to

an exponential and plot η versus time and dark rate in Figure 5.13. We see large

regions of parameter space where quantum efficiency is at the few percent level, for

reasonable values of both tFP and Γd. We see a region of larger quantum efficiency

for junction biases with very shallow wells, where η > 0�1. It should be noted

however that this is not a region of practical interest as the dark rate is too high,

which would degrade contrast to unusable levels.
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Figure 5.13: Measured quantum efficiency η as a function of fast pulse time and
fitted dark switching rate Γd. Same measurement as Figure 5.12a.
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number of photons present during the measurement:

α = 1
log (1 − Pd) log

(1 − Pb

1 − Pd

)
(5.14)

We plot α as a function of fast pulse time and fast pulse amplitude in Figure 5.14.

As expected, this makes the tradeoff between quantum efficiency and dark rate

apparent: the optimal dark rate is near 4MHz. This is not surprising, as this was

the range of parameters for which the input matching network was designed. The

figure of merit plateaus at around α = 4. We can use this value to estimate the

achievable contrast and thus fidelity in a qubit measurement. Assuming a critical

photon number of ncrit = 100 and an output coupling κ = 20MHz, both reasonable

values for a transmon design, we calculate a maximum achievable contrast of 53%

at an optimal time of 100ns. As we shall see, this is reasonably close to the values

we achieve in the qubit readout experiment.

5.4.2 Comparison to Theory

Finally, we compare these results to the input-output theory model developed

in section 3.3. Rates and JPM transition energies are calculated with the complex

scaling method of appendix A. The measured η is considerably less than the theo-

retical prediction assuming no extra sources of loss between the cavity and junction.

The agreement is much better if we assume there is some loss between the cavity

and junction. This is not unreasonable, as there is a significant amount of cabling

and other microwave hardware (coaxial relays, microwave isolator) in between the
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which is likely to play a role in enhancing the dark tunneling rate.
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6 qubit measurement with the jpm

In this chapter, we discuss our efforts to read out a transmon qubit with the

Josephson photomultiplier. We will not describe the readout of a transmon using

conventional heterodyne techniques, as this is a well-studied system. For more

details, the reader is encouraged to consult David Hover’s thesis [64]. We do,

however, present an analysis of the qubit readout resonator response as a function

of drive power in appendix B. The experimental set-up is pictured in Figure 4.8. It

should be emphasized that for the data presented in this chapter we do include a

microwave isolator between the qubit and JPM. For these preliminary experiments,

we wanted to ensure that the classical backaction on the qubit which comes from

the JPM switches to the voltage state was minimized. The isolator provides 18dB

of isolation between the two chips, and also has the advantage of being a good 50 Ω

termination for the qubit. All measurements were done at the base temperature of

our dry dilution refrigerator, at a temperature Tmix ≈ 12mK.

6.1 Qubit Design

The transmon qubits we use in this experiment are of a standard design, pictured

in Figure 6.1. They are made by our collaborators at Syracuse University at the

Cornell Nanofabrication Facility. The qubit design is similar to the one described

in [137] and [30]. The qubit ground plane, capacitor, and readout resonator are

fabricated from thin film niobium sputtered on a high-resistivity intrinsic silicon

wafer. The qubit self-capacitance comes from two large floating electrodes which
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the qubit frequency ω01/2π ≈ 4GHz. The qubit we will focus on in this chapter has

designation MH060.

Flux tuning of the qubits is provided by an external flux bias coil, mounted in

the lid of the sample box. The coil is made from 50 turns of 36AWG copper magnet

wire wrapped around the teflon insulation of a flange mount SMA connector,

with a diameter of 4�1mm and a length of 6mm. The end of the coil is located

approximately 1mm over the center of the qubit chip. Using standard formulae

for the field outside of a solenoid [69], we estimate a mutual inductance of 1�3pH

between the bias coil and the SQUID loop. As the coil has a DC resistance of less

than 1 Ω, we use an external 1kΩ resistor at 4K as a current source which is further

filtered using a copper powder filter mounted at the dilution refrigerator cold stage.

6.2 Photon Counting cQED Readout

The theory of photon counter based readout with the JPM has been investigated

by Govia in et al. [56, 58]. The basic idea is simple: we generate a cavity pointer

state whose amplitude depends on the state of the qubit. In the case where the

cavity linewidth is small, this is easy; we need to drive at one of the dispersed cavity

frequencies. The amplitude of the on-resonant state eq. (6.1) will grow linearly

in time, while the amplitude of the off-resonant Equation 6.2 state will describe a
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back to the origin. Another potential solution is to implement a tunable output

coupler that can turn off the output during the drive [132, 153]. The qubit pointer

state generation process is described in more detain in Appendix B, where we also

show that for maximum contrast we should operate in the regime κ = 4χ. This

readout protocol can also be extended to two and four qubit parity measurements,

which are useful for measuring stabilizers in the surface code [57].

6.3 Dispersive Measurement

Once the JPM bias has been chosen using the method of subsection 5.2.2, we

are ready to begin the qubit measurement. In this section, we will go through

the process of measuring a transmon qubit in the dispersive limit. We first take

spectroscopy data on the qubit cavity as a function of readout drive power and

qubit flux bias. We then do spectroscopy on the qubit to find its transition frequency,

and using this knowledge we can perform rotations on the qubit to initialize it into

a known state, which allows us to measure the fidelity of the JPM measurement.

6.3.1 Cavity Spectroscopy

The first step in characterizing the transmon is to spectroscopically probe the

readout resonator in order to determine the dispersive shift of the cavity. For cavity

photon populations n̄ < ncrit, the qubit in the ground state shifts the bare resonance

of the cavity ωr:

ωr − ω|0〉 = g2
10

Δ0
(6.3)
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(a) (b)

Figure 6.3: Response of the qubit readout cavity when measured with a vector
network analyzer (NA). (a) Readout cavity frequency as a function of applied
readout power. (b) Readout cavity frequency as a function of qubit flux bias, at a
network analyzer power of PNA = −65dBm.

where ω|0〉 is the cavity frequency when the qubit is in the |0〉 state, g10 is the qubit-

cavity coupling, and Δ0 = ω10 − ωr is the cavity-qubit detuning. This relation is

only approximate as the cavity pull is modified by the presence of higher qubit

levels beyond the N = 2 approximation; however, for sufficiently low powers the

true shift χ is well approximated by χ0. At large cavity populations n̄ � ncrit the

qubit-cavity coupling becomes highly nonlinear and the readout resonator behaves

as if there were no qubit [18, 120]. By measuring the cavity frequency at high and

low powers we can therefore extract χ0. For convenience, and as a simple test of

the health of the qubit, we perform this measurement by connecting the qubit to

the HEMT amplifier at 4K and measuring S21 using a vector network analyzer

(VNA). Figure 6.3a shows the result of this so-called "punch-out" spectroscopy,

with a measured χ0/2π = 5�1MHz. From the direction in which the cavity shifts as

we reduce the readout power, we can tell that Δ0 < 0, which is helpful for qubit
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spectroscopy. We can repeat this measurement using the JPM, varying the readout

power using the programmable attenuators on the resonator readout line. The

cavity response measured with the JPM is plotted in Figure 6.4a, where for clarity

the switching probability is normalized to its maximum for each measured power.

As we expect, as we reduce the number of photons in the cavity, the JPM contrast is

reduced. We can also measure the response of the cavity as a function of qubit flux

bias, which is plotted Figure 6.3b. The flux bias tunes the Josephson energy EJ and

therefore the frequency of the qubit.
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Figure 6.4: Cavity response as a function of readout drive power measured with
the JPM with (a) no qubit drive pulse (b) a qubit π-pulse. For clarity, the switching
probability for each power is normalized to the maximum probability at that power.
Each point represents 5040 repetitions.
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such that ωRO = ωr + χ0 (drive on the |0〉 state resonance), and the readout power

such that n̄ � ncrit while still maintaining reasonable contrast. We then monitor

the switching probability as we sweep the qubit drive pulse’s frequency. The pulse

sequence for this measurement is shown in Figure 6.5a. We choose the length of

the qubit spectroscopy tone tQB > T1 ∼ 1μs so that the pulse saturates the |0〉 to |1〉
transition and drives the qubit to themixed state |0〉+|1〉. We choose ameasurement

time tRO < T1 short enough to avoid energy relaxation in the qubit but long enough

to allow for appreciable contrast. Because this transmon design does not feature a

separate qubit drive line on the chip (like, for example, the devices studied in [8]),

the qubit pulse is significantly attenuated by the readout cavity. Practically, this

means we must use a drive 10 to 20 dB larger than the readout pulse.

In Figure 6.5b we plot the measured contrast as a function of qubit drive fre-

quency, which shows a clear enhancement at the qubit f10. Fitting a Lorentizan to

this peak, we extract f10 = 4�5531GHz. The width of the spectroscopic qubit peak

is rather large: Δf10 = 9�4MHz. This indicates that our qubit is subject to a consid-

erable amount of relaxation, which we measure through a direct measurement of

the relaxation rate in subsection 6.3.4; the qubit lifetime is T1 ∝ 1/Δf10. Once the

qubit transition has been located, we can repeat the readout cavity spectroscopy

of section 6.3.1 while also applying a qubit rotation pulse. We plot the results of

this spectroscopic scan in Figure 6.4b. Immediately apparent is the fact that that

ω|1〉 
= ωr − χ0; this occurs because the cavity pull also depends on the energies of

the higher levels of the transmon. The difference in cavity frequency for the two

qubit state preparations, seen in Figure 6.6, is twice the dispersive shift χ. From
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Parameter Optimization

Measurement Parameters

Qubit drive time tQB

Qubit drive amplitude AQB

Qubit frequency fQB

Qubit sideband frequency fSB,RO
Readout time tRO
Readout amplitude ARO

Readout frequency fRO

Readout sideband frequency fSB,RO
QB drive to readout delay tQD

Readout to JPM delay tJD
Fast Pulse Amplitude FPA
Fast Pulse Time tFP

Table 6.1: CMA-ES Optimization Parameters

A major practical difficulty in carrying out the JPM-based qubit readout is the

large number of parameters that must be adjusted in order to maximize the readout

contrast. The large dimensionality of the parameter space makes it impractical to

hand-tune all parameters. For this reason, we decided to use numerical optimization

techniques to find the best operating point for both the qubit and JPM. We use

the CMA-ES algorithm (c.f. section 4.3.3), and perform an on-line optimization on

the contrast, which we define as the difference in switching probability with and

without a π-pulse applied to the qubit. The effect of this optimization can be seen

in Figure 6.7: we increase the visibility of the Rabi oscillations from 13% to 35%.
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(a)

Time

(b)

Time

Figure 6.8: (a) Pulse sequence for a qubit T1 measurement. (b) Pulse sequence for a
qubit T2 measurement.

6.3.4 Qubit Decoherence

It is also obvious from looking at the data in Figure 6.7 that the visibility envelope

of the Rabi oscillations is decaying on a time scale of around 1μs. Along with the

broad qubit spectroscopy line, this is a second indication that the qubit we are

measuring has a short coherence time. We confirm this by measuring the extent

to which the qubit is subject to decoherence. Decoherence is the catch-all term

that refers to all of the extraneous environmental couplings that cause the state of

the qubit to drift away from its desired value. It can be thought of as a series of

small perturbations to the direction of the vector on the Bloch sphere. For example,

flux noise in the SQUID loop causes fluctuations in EJ and thus ω10 [22, 128],

which is equivalent to a rotation around the z-axis. There are many other sources:

hot quasiparticles [91, 26], edge and surface defects [111, 42], and dielectric loss

[118, 114].

Decoherence can take two forms: relaxation and dephasing. Borrowing notation
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used in NMR spectroscopy, these can be characterized by two exponential decay

times T1 and T2. Relaxation describes processes by which the |1〉 state relaxes to
the ground state |0〉, with a lifetime of T1. T2 is the lifetime of a state prepared on

the equator of the Bloch sphere. These states are affected by both relaxation and

dephasing, with an overall lifetime of

1
T2

= 1
2T1

+ 1
Tφ

(6.5)

We measure qubit T1 using the pulse sequence shown in Figure 6.8a. The qubit

is prepared in the |1〉 state using a calibarated π-pulse, and we wait a variable delay

time td before measuring the state of the qubit. The result is plotted in Figure 6.9a,

along with a fit to a decaying exponential from which we extract T1 = 760ns. T2

is measured using the pulse sequence shown in Figure 6.8b, with the data and

exponential fit plotted in Figure 6.9b. The qubit is rotated onto the equator of the

Bloch sphere using a π/2 pulse (length tπ
2

= tπ/2) where it is allowed to dephase

freely for a time T2 for a time td. A second pi/2 pulse moves the state back to the

z-axis for measurement. The envelope of the measured qubit state will decay with

time constant T2; any oscillations indicate a detuning of the original control pulse

from ω10. From an exponential fit to the data, we extract a T2 = 50ns.

Both this T1 and T2 are disappointing. Similar devices, measured by our col-

laborators at Syracuse University have shown T1 times in excess of 15μs. This

type of 2D transmon can have lifetimes in excess of 50μs, as measured by the

UCSB/Google group [8] and the IBM group [30]. Related 3-dimensional transmon
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architectures have achieved coherence times approaching 100μs [124]. These low

coherence times make qubit measurements tedious, as they are comparable to the

JPM measurement time. As we will discuss, this also results in a significant loss of

fidelity.

Where could these degraded T1 times come from? One obvious candidate is that

the junction switching to the voltage state is populating the readout resonator with

photons. However, we have found that the low T1 is not improved when increas-

ing the repetition rate between experiments, and not significantly different when

measured with a HEMT amplifier and heterodyne readout. One likely source of

loss is insufficient infrared shielding of the qubit input and output ports; dedicated

IR filters made using ECCOSORB, a broadband absorbing resin, have been shown

to have a significant impact [10]. The design of the qubit chip itself could be an

issue as well: the floating design of the qubit capacitance, as well as the lack of

microwave crossovers on the chip lead to the possibility of chip modes interacting

with the qubit. This could be solved through the use of microfabricated crossovers

[29]. It is also probable that the off-chip flux bias coil is a problem. The coil could

be poorly thermalized and as it is not superconducting; running a current through

it will heat the chip. An on-chip flux bias line [137] should solve these issues. We

hope that by making these improvements we will be able to increase the qubit

coherence time to a reasonable level.
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6.4 Bright State Measurement

Figure 6.10: |1〉-|0〉 contrast as a function of readout cavity drive power and fre-
quency. We perform the "bright state" readout at an attenuation of 16dB.

In order to increase the JPM measurement contrast and thus fidelity from the

35% observed in the dispersive regime, we decided to exploit the nonlinearity of the

Jaynes-Cummings Hamiltonian. As was first observed by the Yale group [120], for

n̄ > ncrit the transmission through the cavity can have a highly transmitting "bright

state" depending on the qubit state. We review the theoretical understanding

of this regime in appendix B. While this measurement is not QND, it is highly

advantageous for the JPM measurement as the contrast is extremely dependent on

the number of photons which reach the cavity and therefore the cavity population.

The power needed to perform this bright state readout can be found by measuring

the contrast between |1〉 and |0〉 state preparations as a function of power. The
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6.5 Readout Fidelity with the JPM

6.5.1 Measured Fidelity

To better understand the achieved readout fidelity, we compare the switching

probability and contrast as a function of JPM fast pulse amplitude in Figure 6.13a1.

It is important to note that the contrast plotted here is not the difference between

qubit state preparations but the raw contrast between a measurement of the qubit

and the dark switching (no readout drive) probability

Craw = Pbright − Pdark (6.6)

The measurement fidelity of the JPM readout is not defined by this contrast but

rather the contrast between |0〉 and |1〉 qubit preparations:

CF = P|1〉 − P|0〉 (6.7)

This contrast is also the overall visibility of the Rabi oscillations. We observe a

maximum measurement fidelity of 35% in the dispersive limit at n̄ = 12 photons

and 62% in the bright state at n̄ = 56 photons. These fidelities are the so-called

"raw" fidelity of the measurement, and do not take into account infidelity arising

from errors in state preparation. It is a common practice in the literature to report

"corrected" fidelities which adjust for the effect of qubit state error and infidelity

1This data has a slightly lower visibility than what is presented in Figure 6.12, likely due to a
drift in T1.
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from other sources [64].
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6.5.2 Increasing Fidelity

What are the origins of infidelity in the JPMmeasurement? The first identifiable

source of infidelity is the relaxation of the qubit during measurement. As shown

in [50], a finite T1 will reduce the fidelity of a photon counting measurement by a

factor exp(tmeans/2T1). Even though the readout resonator drive pulses we use in

these measurements are fairly short, with tRO = 320ns, they are still a significant

fraction of T1, causing a significant loss of fidelity. Furthermore, the short T1 makes

it likely that there is a significant excess thermal occupation of the |1〉 state and

higher states, which will be misidentified during state preparation. Here the JPM

is at a disadvantage: while it is easy to measure these excess populations with a

heterodyne readout [71], the binary output of the photon counter requires a more

involved protocol. One possibility would be to use Rabi oscillations on the ω21

transition, as proposed in [52]. As a first step, we can check that

P|1〉 − Psat

Psat − P|0〉
≈ 0�5 (6.8)

which is true for the data presented in Figure 6.13b, indicating that the excess

population is not enormous.

The largest source of infidelity can immediately be identified by comparing the

dark switching probability and the switching probability of the |0〉 state preparation.
As explained in section 6.2, the finite cavity κ means that there is a significant

population of photons in the cavity after the measurement drive even when the

qubit is in the ground state. Options for mitigating this effect include a smarter
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7 conclusions and outlook

In summary, we have described the development and measurement of a mi-

crowave photon counter based on a current biased Josephson junction. We have

measured its quantum efficiency to be at the percent level at 5GHz, with a noise

equivalent power comparable to other photon counters. We have also discussed its

use as a readout tool for measurement of the state of a transmon qubit. We observe

maximum raw measurement fidelities of 35% in the dispersive limit and 62% using

a bright state readout.

A look at the JPM figure of merit α = ηλ/Γd shows the options available to us for

improving the fidelity to the greater than 90% needed tomake the JPM a truly useful

tool in cQED systems. Increasing quantum efficiency η will require better matching

at the JPM input, as well as a reduction in the loss between the qubit and counter.

We should be able to reduce the dark switching rate by using microwave-assisted

measurement of a third |f〉 state in the junction well, and by using the phase-

biased JPM design discussed below. Finally, improved qubit readout protocols that

include a cavity reset pulse, or different techniques for preparing cavity pointer

states such as the use of a tunable coupler should increase the photon number

contrast during a measurement. In parallel, an improved theoretical understanding

of the JPMmeasurement should be developed, beyond the approximations derived

in section 3.3.
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7.1 Improved JPM Circuits

7.1.1 Flux-Biased JPM

Figure 7.1: Flux-biased JPM circuit.

A major limitation of the current biased junction JPM is the long reset time

that is needed to allow heat and quasiparticles to dissipate. A circuit that does

not switch to the voltage state would be preferable to the current set-up. One

possibility is to shunt the output of the JPM with a small resistance, but a better

idea seems to be to move towards a circuit that more closely resembles that of a

phase qubit. By shunting the junction with an inductor, the potential energy gains

an additional δ2 curvature, where δ is the phase across the junction. If the inductance

is chosen such that [38] βL = 2LSIc/Φ0 � 2�5, there will be two potential energy

minima with different plasma frequencies. A microwave reflection measurement

can then determine the state of the junction bymonitoring the reflection on aweakly

capacitively coupled port. Not only does this circuit not switch out to the voltage
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state, but the relatively higher quality factor of the circuit should make it possible to

use a third level in the junction minimum to further suppress the dark counting rate.

Using an inductively coupled flux bias line also helps shield the junction against

decoherence from the current bias source. One challenge of implementing this

circuit is that an input matching network will pull and de-Q the plasma resonances

of the JPM; we hope that the quantum efficiency gain from using a two-photon

readout will offset the lack of a matching network.

7.1.2 SFQ Readout JPM

SFQ

(b)(a)

Figure 7.2: (a) SFQ Readout JPM circuit diagram. (b) SFQ Readout JPM current-
voltage characteristic, showing the load line of the output circuit in blue.

Recently, a scheme for controlling quantum circuits using single flux quantum

(SFQ) logic was proposed [104]. SFQ logic [93, 21] is an all-superconducting digital

logic family that relies on the propagation of individual flux quanta to represent

data. It has been extensively studied and used to develop extremely fast classical

digital circuits. This is an attractive proposal as SFQ is inherently compatible with

existing superconducting quantum logic. Bringing the control hardware as close as
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possible to the quantum devices offers the potential for significant reductions in

overhead, and is a much more viable proposal for scaling to large quantum devices.

The JPM integrates naturally into a SFQ control set-up as its binary output is

well-suited to be interfaced to flux quantum logic. This can be accomplished using a

circuit like the one drawn in Figure 7.2a. A small output resistor (Ro ∼ 1 Ω, the input

impedance of an SFQ circuit) converts the JPM switch into a flux slip that can be

coupled to the digital logic. A large output decoupling inductor LD � LJ protects

the junction from being decohered by the low-impedance SFQ logic. This inductor

also has the advantage of automatically resetting the JPM, in a similar manner to

what happens in a Josephson relaxation oscillator [142]. The Josephson junction

will attempt to switch to the voltage state, but this voltage will be discharged as

a current develops through the shunt inductor. This reduces the junction bias

(or equivalently, reduces the tilt of the washboard potential) until the junction

retraps into the voltage state [92]. As long as the output load line, shown in blue in

Figure 7.2b intersects the steep part of the junction IV characteristic, the load line

will swing back towards the origin in a time treset ∼ LD/R. Numerical simulations

have shown the validity of this concept, and we hope it will find a role in future

implementations of SFQ-qubit control circuits.

7.2 Conclusion

To our knowledge, the results in this thesis are the first measurement of a

transmon qubit with a photon-counting circuit. They therefore represent only the
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first steps in a wider world of qubit readout, especially when compared to the large

body of work published on heterodynemeasurements. Microwave photon counting

has received increasing attention, with groups proposing implementations different

to our own [129, 68]. We hope that continued attention will bring new results, and

show a promising way forward for the development of quantum computation.
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a details of the josephson junction potential

In this appendix we summarize several useful results on the tilted washboard

potential (Equation 2.20) that describes a Josephson junction of critical current Ic

biased with current Ib. We first derive the cubic approximation to this potential,

which is valid near one of the potential minima for Ib/Ic → 1 so long as EJ/EC � 1.

Experimentally, typical values of EJ ≡ Φ0I0/2π ∼ 1 eV and EC = e2/2CJ ∼
10−8 eV, so the current biased junction is safely in this limit. We then use the WKB

appoximation to calculate the energies and tunneling rates of the states localized in

the well. Finally, we use the complex scaling method to numerically compute these

energies and widths with higher accuracy.

While most this material has already been extensively studied ([23, 24, 86, 87,

41, 101, 40, 102, 1]) , these results are necessary to calculate various parameters

of the JPM. They can be hard to track down in the literature (especially the exact

transformation used to get the cubic approximation) and different authors use

different conventions. The complex scaling method in A.3 was first developed

for calculating resonances in atomic systems, and publications on the subject are

difficult to unpack. It is hoped that the reader will find this a useful and clear

exposition, if somewhat lacking in mathematical rigor. For the gory details, the

reader is encouraged to read Frank Strauch’s thesis [138] for an especially lucid

exposition of these issues.
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A.1 Cubic Approximation

We first write the complete Hamiltonian for the current biased Josephson junc-

tion as:

Ĥ = 4EC

�2 p̂2
δ − EJ(cos δ̂ + ibδ̂) (A.1)

where δ̂ is the operator for the phase difference across the junction and p̂2
δ its

conjugate momentum. For convenience, in the rest of this appendix we will drop

the "hat" notation for operators. The "mass" of the phase particle is given bym−1 =

8EC�
−2. The minimum and maximum of the potential are located at:

δmin = arcsin ib (A.2)

δmax = π − arcsin ib (A.3)

and the frequency of small oscillations around thisminimum (the plasma frequency)

is:

ωp =
√

1
m

d2U(δmin)
dδ2

= 1
�

√
8ECEJ(1 − i2b)1/4 (A.4)

It is convenient for the calculations that follow to shift and scale the potential energy

so that its minimum is at δ = 0. One possible transformation to accomplish this is:

x = α−1 (δ − arcsin ib)

p = αpδ

(A.5)
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where we have defined

α =
(8EC

EJ

)1/4 (
1 − i2b

)−1/8
(A.6)

Applying A.5 to Equation A.1, we are left with:

H = 1
2mα2p

2 + EJ

(√
1 − i2b (1 − cosαx) + ib sinαx− ibαx

)
(A.7)

up to an arbitrary constant that we ignore. Defining �ωp = 1/mα2, this can be

rewritten as:

H

�ωp

= 1
2p

2 + 1
α2

(
1 − cosαx+ ib

(
1 − i2b

)−1/2
(sinαx− αx)

)
(A.8)

As mentioned in the introduction, for typical junction parameters α is small, so

we expand the potential energy term in α to get the cubic approximation to the

washboard potential:

H

�ωp

= 1
2p

2 + 1
2x

2 − gx3 + O(α2) (A.9)

with g = αib/(6
√

1 − i2b). The cubic approximation to V (x) is plotted in Figure A.1.

The minimum is again at x = 0, and the maximum at xmax = 1/3g with the height

of the barrier V (xmax) = 1/54g2. Since for this scaled potential the frequency of

small oscillations �ω = 1, V (xmax) is equal to the number of states under the barrier

Ns, therefore:

g = 1/
√

54Ns (A.10)
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amplitude outside of the well. This exponential decay process to the voltage state is

of course exactly the mechanism through which we detect photons with the JPM.

A.2 Perturbation Theory and WKB Formulae

A.2.1 Energy Levels

A useful first step in calculations involving the cubic potential A.9 is to use

perturbation theory to characterize the energies of the metastable states. As usual,

we write

H = H0 + gH1

H0 = 1
2
(
p2 + x2

)
(A.12)

H1 = −x3

This is a valid approach since we know that experimentally g is small. Furthermore,

the cubic has a nice symmetry property which can be seen by considering the action

of the parity operator Π |x〉 = |−x〉:

H(−g) = Π†H(g)Π (A.13)

Since Π is unitary, H(−g) and H(g) have the same eigenvalues and we need only

consider g ≥ 0.

A thorough treatment through Rayleigh-Schrödinger perturbation theory, while
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possible, is extremely tedious, and results in power series that are formally divergent.

Alvarez [1] has studied the perturbation theory in detail using Borel summation. We

will content ourselves with calculating the energies to second order using harmonic

oscillator wavefunctions. In this basis, it can be shown that

〈n|x3|m〉 = 1
2
√

2
(
√
m(m− 1)(m− 2)δn,m−3+

3
√
m3δn,m−1 + 3

√
(m+ 1)3δn,m+1+√

(m+ 1)(m+ 2)(m+ 3)δn,m+3) (A.14)

A straightforward application of perturbation theory [127] gives for the first three

level splittings:

ω10 = 1 − 15g2

2
ω21 = 1 − 15g2 (A.15)

ω32 = 1 − 179g2

8

Recalling that we have defined the coupling g = 1/
√

54Ns and that to make the

connection to the Josephson junction potential we should rescale these energies

by �ωp, we recover the expression usually found in the literature for the transition

frequency between ground and first excited states:

�ω10 = �ωp

(
1 − 5

36Ns

)
(A.16)
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Note that the system’s anharmonicity is given by:

α = ω21 − ω10 = − 5�ωp

36Ns

(A.17)

which leads to a relative anharmonicity of 8% for Ns = 2.

A.2.2 Tunneling Rates

Because of the significant experimental effort ([101, 41], and many others) de-

voted to testing the effects ofmacroscopic quantum tunneling in Josephson junctions

the calculation of tunneling rates using the WKB approxmation. The most impor-

tant work is that of Caldeira and Leggett [23, 24, 25], who also include the effects of

dissipation due to the system’s connection to the environment which acts as a heat

bath. We should also mention the theory due to Larkin and Ovchinnikov [86, 87, 40]

which considers the effect of a coherent drive on the lifetime of metastable states.

Rather than give a complete overview of the lengthy WKB calculations1, we will

only sketch out the method, following [138] and cite the most important results.

The WKB method [133] consists in approximating solutions to the Schrödinger

equation in the form

Ψ(x) ∼ exp
(∫ xt

x

√
2m
�

√
E − V (x′)dx′

)
(A.18)

where xt are classical turning points of the potential. To apply the approximation

1The WKB approach in this section is based on the standard wavefunction-matching approach,
while Caldiera and Leggett use a more general path integral formulation. See [138] and [133] for
details.
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to Equation A.9 we need to find the roots of the cubic in the WKB integral of

Equation A.18:

1
2x

2 − gx3 − E (A.19)

Using the trigonometric solution to the cubic [84], they can be written as

x0 = 1
6g (1 + 2 cos(θ + 2π/3))

x1 = 1
6g (1 + 2 cos(θ + 4π/3)) (A.20)

x3 = 1
6g (1 + 2 cos(θ))

where

θ = 1
3 arccos

(
1 − 108g2E

)
(A.21)

Expanding these expressions for small g to O(g3), we get:

θ = (24E)1/2g + 3
8(24E)3/2g3

x0 = −
√

2E + 2Eg − 5
√

2E3g2 + 32E2g3

x1 =
√

2E + 2Eg + 5
√

2E3g2 + 32E2g3

x2 = (2g)−1 − 4Eg − 64E2g3

(A.22)

The WKB integral in the classically forbiddden region under the barrier is

S(x) =
∫ x2

x1
dx′√x′2 − 2λx′3 − 2E

=
√

2g
∫ x2

x1

√
(x− x0)(x− x1)(x− x2) (A.23)
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This integral is messy, but it can be computed using the asymptotic form of the

hypergeometric function2 [138] to find

S = 1
15g2 − E

2 + 1
2E log

(
Eg2

8

)
+ O(g log g) (A.24)

Assuming that the wavefunctions in the well are well approximated by those of the

harmonic oscillator so that E = n+ 1/2, this expression can be substituted into the

Gamow formula [51] for tunneling rates to finally obtain:

Γn = ωp

n!
√

2π
(432Ns)n+1/2 exp

(
−36

5 Ns

)
(A.25)

A.3 Complex Scaling Method

In this section, we study the energies and tunneling rates of the cubic anharmonic

oscillator states numerically, using the complex scalingmethod. Thismethod, which

was first developed to study resonances in atomic and nuclear systems, greatly

simplifies the computation of the complex eigenenergies of continuum states. We

will first give a brief, informal overview of the method and then apply it to the

cubic oscillator. Our treatment largely follows that of Aoyama et al. [4]. For a much

more comprehensive treatment of the subject, we recommend the excellent review

article by Moiseyev [108].

2Mathematica to the rescue, as usual.
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A.3.1 The Method

The resonances of a scattering problem are characterized by two parameters:

their energy E and width Γ, which can be considered the real and imaginary parts

of a complex energy ε = E + iΓ/2. For a given Hamiltonian H , these energies

are the poles [161] of the operator G = (H − ε)−1, which is essentially the Green’s

function corresponding to H . Bound states correspond to poles on the real axis,

while resonances are located in the lower half-plane, typically hidden by branch

cuts in G. This is because the wavefunctions which describe the resonance states

are not bounded as Ψ(x → ∞), and are therefore not in the Hilbert space of the

problem.

To illustrate this, consider the solutions to the time-independent Schrödinger

equation of a scattering problem, which can be written in the form [127]:

Ψ(r → ∞) � e−ikr + S(k)e
ikr

r
(A.26)

where the wavevector k is given by E = (�k)2/2m. Since k = k′ − ik′′ is complex,

the outgoing wave will be

Ψout(r) ∼ eikr = eik′rek′′r (A.27)

Clearly, the imaginary part of ε will cause the wavefunction to diverge. The insight
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of the complex scaling method is that by making the substitution3:

r′ = reiθ (A.28)

we can change the asymptotic behavior of Ψ. The effect of this substitution on A.27

is:

Ψout(r′) → exp [i(k′ cos θ + k′′ sin θ)r] exp [−(k′ sin θ − k′′ cos θ)r] (A.29)

so that as long as tan θ > k′′/k′ the state is normalizable. Practically, we define a

transformed Hamiltonian4:

H(θ) = e−2iθT + e−iθV (A.30)

where T and V are the kinetic and potential energy operators. We then pick a

convenient (finite) basis {ψn(θ)} for the wavefunctions and solve the eigenvalue

problem

[H(θ) − εn(θ)]ψn(θ) = 0 (A.31)

There remains the problem of determining the scaling parameter θ, which

may be in general complex. Yaris and Winkler [160] suggest using the so-called

hypervirial theorem to check that

2 〈T (θ)〉 = − 〈V (θ)〉 (A.32)

3Also known as the dilatation transformation.
4A theorem by Balslev and Combes [6] shows that the eigenvalues of this transformed Hamilto-

nian are independent of θ if it is sufficiently large and are exactly those of the unscaled problem.
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is satisfied for the correct value of θ. This is equivalent [83] to checking that

∂

∂θ
TrH = 0 (A.33)

For the cubic, it is enough to consider only real values of θ, and we simply plot the

energies found from Equation A.31 for different values of the scaling parameter

and choose a value where ∂En/∂θ = 0.

A.3.2 The Cubic Potential

We now apply the complex scaling method (CSM) to the Hamiltonian of Equa-

tion A.9. A convenient basis to use is the wavefunctions of the quantum harmonic

oscillator:

ψn(x) =
(

1√
π2nn!

)1/2

e−x2/2Hn(x) (A.34)

where Hn(x) are the Hermite polynomials. Writing H as a matrix, we then numeri-

cally solve the eigenvalue equation A.31 to calculate the complex energies of the

cubic oscillator, as well as the wavefunctions that correspond to those energies

Ψ(x) =
N∑

n=0
cnψn(x) (A.35)

We find thatN = 100 is sufficient to ensure convergence for all values of g, consistent

with the results of Alvarez [1]. The real part of εn is plotted for different values of

the complex scaling parameter θ in Figure A.2; there is a large region wherein Re ε

is constant, indicating that the method has converged. We choose θ = 0�1π, a value
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to approach the top of the energy barrier the CSM calculation deviates significantly.

This makes sense, as when there is only one energy level in the potential well the

n = 1 state loses its metastable character and is more akin to a continuum state,

and it is no longer appropriate to think of it as tunneling out of the well.

Finally, we calculate the coupling between energy levels for the JPM. As shown

in section 3.3, the interaction Hamiltonian between the JPM and its input line is

given by:

Hint =
(

Φ0

2π

)
ΔÎ δ̂ (A.36)

where δ̂ is the junction phase operator. We are therefore interested in the matrix

elements 〈m|δ̂|n〉. In the formalism we have developed, the position operator x̂

takes the place of the junction phase, and it is straightforward to calculate these

matrix elements from the coefficients c = {cn} calculated for each wavefunction:

〈m|δ̂|n〉 = cm · x̂ · cn (A.37)

These coefficients are plotted in Figure A.5.
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b the jaynes-cummings hamiltonian

In this appendix, we consider the dynamics of the coupled qubit-cavity system,

and derive several useful results from a semi-classical perspective. Much of this

work is based on the studies by Boissonneault et al. [16, 17, 18], and is inspired by

the model considered in [13].

B.1 Semiclassical Qubit and Cavity

We first consider the conventional circuit-QED setup, with a qubit coupled with

strength g to a cavity at frequency ωr. The qubit has |0〉-|1〉 transition frequency

ω10 a fixed detuning Δ = ω01 − ωr from the cavity frequency and anharmonicity α.

From standard cQED theory:

χ = g2

Δ
α

Δ − α
(B.1)

ncrit = 1
4

(
Δ
g

)2

(B.2)

The two Lamb-shifted qubit frequencies are ω± = ωr ± χ. The cavity can be

asymetrically coupled, such that the total photon loss rate out of the cavity is

κ = κin + κout. Note that κ = ωr/Q.

An rf drive is applied to the cavity with amplitude ε and drive detuning Δd =

ωd − ωr. We write down the equations of motion governing the coherent state
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amplitude α inside the cavity for the two possible qubit states as :

α̇+ = −iε− i(Δd + χ− iκ/2)α+ (B.3)

α̇− = −iε− i(Δd − χ− iκ/2)α− (B.4)

For a drive at the low frequency dressed state with Δd = −χ, the above two

equations are:

α̇+ = −iε− κα+/2 (B.5)

α̇− = −iε+ 2iχα− − κα−/2 (B.6)

The formal solution for theses equations for arbitrary drive ε(t) is given by:

α+(t) = −ie−κt/2
∫ t

0
ε(t′)eκt′/2dt′ (B.7)

α−(t) = −ie−κt/2+2iχt
∫ t

0
ε(t′)eκt′/2−2iχt′

dt′ (B.8)

In the rest of this note we will assume a constant drive field ε(t) = ε. Solving for

the coherent state amplitudes:

α+(t) = −i2ε
κ

(
1 − e−κt/2

)
(B.9)

α−(t) = 2ε
4χ+ iκ

(
1 − e−κt/2e2iχt

)
(B.10)

Typical state trajectories as a function of drive length td are shown in Figure B.1a,

and photon population in Figure B.1b. The state resonant with the drive grows
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along one axis in quadrature space, while the other state spirals towards a point

along the other axis. Note that if κ = 0, the detuned cavity state will return to the

origin after td = π/χ.
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Figure B.1: (a) Cavity state trajectories in IQ space and (b) cavity photon population
as a function of time, for χ/2π = 2MHz, κ−1 = 100ns, td = 2π/χ and n̄ = 40.

We will assume that we can perform a strong, fast reset of the cavity state,

bringing one state back to the origin. This implies that the quantity of interest is

the magnitude of the separation between the different cavity states:

D = |α+ − α−|2 (B.11)

Calculating this quantity using the full expression for the state amplitudes yields

an oscillatory function that is not particularly enlightening. Instead, we look at

the limit in which damping due to cavity relaxation and is strong enough that the
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cavity has reached a steady state. In this case, equivalent to taking the t → ∞:

α+ = −i2ε
κ

(B.12)

α− = 2ε
4χ+ iκ

(B.13)

Calculating D:

D = |α+ − α−|2

=
∣∣∣∣∣−i2εκ − 2ε

4χ+ iκ

∣∣∣∣∣
2

= 64ε2

κ2
χ2

16χ2 + κ2 (B.14)

Since we are driving on one of the cavity resonances, we can use Equation B.9

to find a relation between ε and the steady state cavity photon population, n̄ =

|α+(t → ∞)|2:
ε = κ

2
√
n̄ (B.15)

We are interested in the flux λ of photons leaving the cavity at the output port,

which is given by:

λ = κoutD

= 16n̄ κχ2

16χ2 + κ2 (B.16)

where we have assumed that the cavity is only weakly coupled at the input and thus

κ ≈ κout. Maximizing this function with respect to κ, we find that the optimal cavity
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decay rate is given by κ = 4χ and λmax = 2n̄χ. Figure B.2a shows the photon flux

as a function of κ for long times. As the drive becomes shorter, the optimal value

of κ increases, as shown in Figure B.2b, and the maximum possible λ decreases

(Figure B.2c). Of interest are the values at tdχ = 0�5, the optimal time for the κ = 0

cavity; we find λmax/2χn̄ = 0�9965 and κ/χ = 4�08.
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Figure B.2: (a) Photon flux λ vs κ at long times, π/κ � t and n̄ = 10. The maximum
is at κ = 4χ. (b) Optimal κ vs. time of cavity drive td at fixed n̄. (c) Maximum λ for
a given cavity drive time at fixed n̄.
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B.2 Semiclassical Cavity and Quantum Qubit

The model in the previous section is essentially semiclassical, as it does not take

into account the drive amplitude dependence of the readout resonator frequency. In

order to properly account for this, we treat the qubit quantum mechanically, using

an exact diagonalization [18] of the Jaynes-Cummings Hamiltonian in both the

two-level approximation and the three-level approximation. A rigorous justification

of this model can be found in the papers by Larson and Stenhold [88] and Larson

[89], and in the three level case is similar to the model for a Ξ-atom considered in

[158]1.

B.2.1 Diagonalizing the Jaynes-Cummings Hamiltonian

Two Level Qubit

Consider a two level qubit with transition frequency ω10 coupled to a cavity

with frequency ωr with coupling strength g. The Hamiltonian for this system, using

the rotating wave approximation, is:

Ĥ2 = ωcâ
†â+ ω10

2 σ̂z + g
(
âσ̂† + â†σ̂

)
(B.17)

The total number of quanta in the system

N̂q = â†â+ 1
2 σ̂z (B.18)

1With the important difference that Wu and Yang diagonalize the Hamiltonian in terms of level
energies instead of detunings.
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is a conserved quantity, since
[
Ĥ2, N̂q

]
= 0. We therefore diagonalize the Hamil-

tonian in the basis of constant total excitation number {|±, n〉}. In this basis, the

Hamiltonian becomes

Ĥ′
2 = Ĥ2 − ωcN̂q

=

⎛
⎜⎜⎝Δ/2 g

√
n

g
√
n −Δ/2

⎞
⎟⎟⎠ (B.19)

where Δ = ωr − ω10 with degenerate eigenvalues

χ± =
√

Δ2

4 + g2n (B.20)

The original Hamiltonian is therefore

Ĥ2 = ωrâ
†â+ 1

2 (ωz + χ) σ̂z (B.21)

This last equation makes it clear that the dispersive shift is in fact given by eq. (B.20).

Three Level Qubit

We repeat the same procedure for a three level system. The Hamiltonian is now:

Ĥ3 = ωcâ
†â+

2∑
j=0

ωjΠ̂jj +
1∑

j=0
gj

(
âΠ̂j+1,j + â†Π̂j,j+1

)
(B.22)



169

where ωj is the energy of the jth level and Π̂ij = |i〉〈j|. We can re-write this Hamilto-

nian in terms of the transition frequencies:

Ĥ3 = ωcâ
†â+ ω10Π̂11 + (Δ10 + Δ21)Π̂22 + Ĥint (B.23)

The total number of quanta is given by:

N̂q = â†â+ Π̂11 + Π̂22 (B.24)

and the transformed Hamiltonian in the basis |j, n〉 is given by

Ĥ′
3 = Ĥ3 − ωcN̂q

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 g0
√
n 0

g0
√
n (Δ10 − ωc) g1

√
n− 1

0 g1
√
n− 1 (Δ21 + Δ10 + ωc)

⎞
⎟⎟⎟⎟⎟⎟⎠

(B.25)

In terms of the eigenvalues of the three-level Hamiltonian Λ0,1,2, the Hamiltonian

is:

Ĥ′
3 = ωcâ

†â+
2∑

j=0
(ωc + Λj) Π̂jj (B.26)

We plot the calculated dispersive shift for the two-level case and the three-level

case as a function of cavity occupation in Figure B.3. The two-level approximation

captures the expected features, with the dispersive shifts for the two levels being

symmetric and going to zero at large photon numbers. The three-level case is more

interesting: we see that the dispersive shifts for both |1〉 and |0〉 are on the same
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