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Optimizing single microwave-photon detection: Input-Output theory
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High fidelity microwave photon counting is an important tool for various areas from background
radiation analysis in astronomy to the implementation of circuit QED architectures for the realiza-
tion of a scalable quantum information processor. In this work we describe a microwave photon
counter coupled to a semi-infinite transmission line. We employ input-output theory to examine a
continuously driven transmission line as well as traveling photon wave packets. Using analytic and
numerical methods, we calculate the conditions on the system parameters necessary to optimize
measurement and achieve high detection efficiency.

I. INTRODUCTION

Circuit quantum electrodynamics (cQED) has emerged
as a powerful paradigm for the realization of quantum
computational circuits in a scalable architecture [1–5] as
well as a demonstration of quantum radiation-matter in-
teraction in the strong and ultra strong coupling regimes
[6–9]. Here, the two lowest energy levels of a supercon-
ducting Josephson circuit play the role of an artificial
atom, while thin film cavities and transmission lines are
used to realize electromagnetic field modes. Strong cou-
pling between the cavity fields and the artificial atom
has been used to create strongly non classical states of
the electromagnetic field [7, 10–14]; in addition, coupling
between these modes and the Josephson circuit can be
used for high fidelity control [15, 16] and measurement
[17–26].
In conventional, optical-frequency implementations of

quantum optics, detection of the electromagnetic mode
is performed by a photon counter. The counter is typi-
cally modeled as an ensemble of two-level states that are
weakly coupled to the light field [27]. Photon absorption
is accompanied by generation of a large, easily measured
classical signal, and detector performance is expressed
in terms of quantum efficiency and spurious dark count
rate [28]. In the microwave frequency range, conventional
wisdom holds that there exists no material that can be
photoionized by the lower frequency radiation. However,
a variety of Josephson circuits are capable of detecting
single microwave photons with high efficiency [29–37]. In
contrast to optical-frequency counters, Josephson-based
microwave photon counters are realized as single effective
two-level systems that couple strongly to the incident mi-
crowave field [29]. For this reason, they differ fundamen-
tally from optical frequency counters. It is the purpose of
this paper to explore the conditions for high-efficiency de-
tection of propagating photons by these single, strongly
coupled Josephson circuits. For the sake of complete-
ness, we consider the Josephson photomultiplier (JPM),
a current-biased junction capable of efficient detection
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of microwaves that are near resonant with the transition
between the two lowest states in the metastable minima
of the circuit potential. Previously, the JPM has been
applied to investigation of temporal correlations of in-
cident coherent and thermal microwave fields [30], and
the JPM is currently under investigation for high fidelity
measurement of single qubits [38] and of multiqubit par-
ity operators [39]. Other approaches to single microwave
photon detection include driven Λ systems [40]. In this
approach, the dressed states of a qubit-resonator system
constitute an impedance-matched system, which absorbs
an input photon with a near-unity efficiency [41, 42].

Here, we demonstrate that efficient microwave photon
detection can be understood from a simple intuitive pic-
ture of rate matching, which has as its classical analog
the usual impedance matching condition that provides
for optimal power transfer in microwave circuits [43]. We
present a general description of a transmission line di-
rectly coupled to a JPM, and explore the conditions that
must be met to maximize detector quantum efficiency.
Our results agree with those of [44], where only a contin-
uous drive input state was considered. Furthermore, our
results extend beyond those of [44] as we include addi-
tional incoherent channels and study pulsed input states.

To describe our system, we use input-output formalism
[45, 46], a tool from the field of open quantum systems
theory, that leads to generalized Heisenberg equations.
The advantage of this approach is that it does not re-
quire us to specify the form of the photon pulse in the
transmission line. As a result, we can examine arbitrary
states in the transmission line, including both continuous
wave drive and wave packets with finite photon number.

The input-output formalism leads to a system of equa-
tions,from which we determine conditions on the system
parameters that allow us to optimize detection efficiency.
A sufficient set of these parameters can be designed or
even controlled in experiment such that this paper pro-
vides a guide towards practical implementation of the
measurement of traveling photons using a JPM, achiev-
ing the optimal measurement efficiency experimentally
possible.

This paper is organized as follows. In Sec. II, we
present the system of interest and derive the correspond-
ing equations of motion using input-output formalism. In
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Sec. III, we solve the resulting equations by substituting
operators with their corresponding expectation values.
This simplification leads to rate equations, the solution of
which yields to a general matching condition for measure-
ment optimization. In Sec. IV, we we use a mean field
approach that captures more of the quantum mechanical
character of the system. We find the optimization condi-
tions for continuous drive inputs, and for various pulsed
waveforms. In Sec. V, we present our conclusions.

II. SYSTEM AND EQUATIONS OF MOTION

The system of interest is a microwave transmission line
directly coupled to a JPM. The system Hamiltonian is
written as

Ĥ = ĤJPM + ĤTL + ĤINT, (1)

where ĤJPM denotes the Hamiltonian of the JPM, ĤTL

is the bare transmission line Hamiltonian, and ĤINT de-
scribes the interaction between the transmission line and
the JPM. The JPM is realized through a current biased
Josephson junction and is described by a tilted wash-
board potential [47], from which one can isolate two
quasi-bound energy levels |0〉 and |1〉, with associated
Hamiltonian

ĤJPM = −~ω0
σ̂z

2
. (2)

Here, ω0 is the transition frequency and σ̂z =
[
σ̂, σ̂†

]
is

the usual Pauli-Z operator with

σ̂ = |0〉 〈1| σ̂† = |1〉 〈0| . (3)

Note that the local minima in the JPM potential are
physically equivalent and only transitions between them
can be detected [48] (see Fig. 1). Both states can tun-
nel to the continuum with rate γ0 and γ1, respectively.
For our description, we represent the continuum by a fic-
titious measurement state |m〉. Incoherent tunneling to
the |m〉 state corresponds to generation of a measurable
voltage pulse. Absorption of a resonant photon induces
a transition from |0〉 to |1〉, which tunnels rapidly to the
continuum since γ1 ≫ γ0; this system can thus be used
to count incoming photons.
Quantization of the transmission line [17] leads to the

usual multimode harmonic oscillator Hamiltonian:

ĤTL = ~

∫ ∞

0

ωâ†(ω)â(ω)dω. (4)

Here, ω is the frequency of the transmission line mode
and â†(ω), â(ω) are the bosonic creation and annihilation
operators for a photon at frequency ω, respectively. Note
that the density of modes is included in â(ω)† and â(ω).
As a result we have â†(ω) = f(ω)â†(ω), where f(ω) is the
envelope of the incoming radiation in frequency space.
The interaction between the JPM and the transmission
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FIG. 1. System schematic. The JPM is directly coupled to
a transmission line which excites the JPM by an incoming
photon flux. The potential of the JPM is a tilted washboard
with two quasi-bound states in the local minima.

line arises from the additional bias on the JPM caused
by the transmission line current (see Fig. 1). This leads
to a dipole interaction between the JPM states and the
transmission line described by the Hamiltonian

ĤINT = ∆Î
Φ0

2π
ϕ̂J , (5)

where Φ0 ≡ h/2e is the magnetic flux quantum and ∆Î
and ϕ̂J describe the additional quantized current coming
from the transmission line and the quantized phase of the
JPM, respectively. To derive expressions for ∆Î and ϕ̂J

we use standard circuit quantization, which yields [49, 50]

∆Î =

√

~ωs

4πZ0

∫ ∞

0

dω
(
â†(ω) + â(ω)

)
(6)

ϕ̂J =
i√
2

(
2EC

EJ

) 1
4 (

σ̂† − σ̂
)
. (7)

Here Z0 is the transmission line impedance; ωs is the
characteristic signal frequency; EC = (2e)2/2CJ is the
Cooper pair charging energy, with the junction self-
capacitance CJ ; and EJ = ~Ic/2e is the Josephson cou-
pling energy, where Ic is the critical current of the junc-
tion. Inserting expressions (6) and (7) into (5), we obtain
the quantized interaction Hamiltonian

ĤINT = i~

√

ωsZJ

8πZ0
︸ ︷︷ ︸

≡
√

γTL/2π

∫ ∞

−∞

dω
[
â†(ω)σ̂ − σ̂†â(ω)

]
, (8)

where γTL describes the coupling rate between the trans-
mission line and the JPM. The expression for γTL in-
cludes the junction impedance ZJ = 1/ωsCJ .
For this derivation (see Appendix A) we applied the

rotating-wave-approximation (RWA) [51], which leads to
a continuous Jaynes-Cummings interaction [52] and al-
lows us to put the lower limit of integration to −∞ in-
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stead of 0. We further assumed that the coupling is con-
stant over all modes, which is the first Markov approx-
imation [53]. Since the interaction is described by (8),
we can use standard input-output formalism [45] to de-
rive the quantum mechanical Langevin equation for an
arbitrary JPM operator Ŝ

˙̂
S(t) =

i

~

[

ĤJPM, Ŝ(t)
]

−
[

Ŝ(t), σ̂†(t)
]{γTL

2
σ̂(t)−√

γTLâin(t)
}

+
{γTL

2
σ̂†(t)−√

γTLâ
†
in(t)

} [

Ŝ(t), σ̂(t)
]

,

(9)

with input field operator defined as

âin(t) ≡ − i√
2π

∫ ∞

−∞

dω exp [−iω (t− t0)] ât0(ω), (10)

where ât0(ω) is the field operator at time t = t0. Without
loss of generality, we set the starting point of the inter-
action to zero, t0 = 0. Our system satisfies the standard
input-output relation [51]

âout(t) + âin(t) =
√
γTLσ̂(t), (11)

where the output field operator is defined as

âout(t) =
i√
2π

∫ ∞

−∞

exp [−i (t− t1)] ât1(ω). (12)

Here, ât1(ω) is similar to ât0(ω) in that it is defined as
the field operator at a time t1 > t0 after the interaction
between transmission line and JPM is turned on.
Up to now we have not considered incoherent channels

of the JPM. We include them using the standard Lind-
blad formalism. The Lindblad operator that describes
tunneling from the excited state to the continuum (mea-
surement process) is

L̂1 =
√
γ1 |m〉 〈1| , (13)

with tunneling rate γ1, where the state |m〉 represents
all states outside the potential well of the quasi-bound
states. Another incoherent channel is given by dark
counts

L̂0 =
√
γ0 |m〉 〈0| , (14)

a tunneling with rate γ0 from the ground state of the JPM
into the measurement state. We also take into account
the possibility of relaxation from |1〉 to |0〉 through energy
loss to the environment. This process is represented by
the Lindblad operator

L̂rel =
√
γrel |0〉 〈1| , (15)

where γrel is the relaxation rate. This rate only includes
emission into the intrinsic environment of the JPM, since
emission back to the transmission line is already built into
the input-output equations. Finally, we assume that the

JPM has the possibility to reset after a measurement,
such that multiple measurements are possible. The reset
is described by the operator

L̂res =
√
γres |0〉 〈m| , (16)

where γres is the reset rate. The reset process brings the
JPM from the measurement state |m〉 back to the ground
state |0〉.
To include these Lindblad channels in the above

Langevin equation, we use the adjoint master equation
[54]

˙̂
S(t) =

i

~

[

HJPM, Ŝ(t)
]

+
∑

k

(

L̂†
kS(t)L̂k −

1

2
Ŝ(t)L̂†

kL̂k −
1

2
L̂†
kL̂kŜ(t)

)

,
(17)

with k ∈ {0, 1, rel, res}. Combining (9) and (17), we ob-
tain a Langevin-Lindblad master equation that describes
the coherent and incoherent dynamics of an arbitrary
system operator

˙̂
S(t) =

i

~

[

ĤJPM, Ŝ(t)
]

−
[

Ŝ(t), σ̂†(t)
]{γTL

2
σ̂(t)−√

γTLâin(t)
}

+
{γTL

2
σ̂†(t)−√

γTLâ
†
in(t)

}[

Ŝ(t), σ̂(t)
]

+
∑

k

(

L̂†
kS(t)L̂k −

1

2

[

Ŝ(t)L̂†
kL̂k + L̂†

kL̂kŜ(t)
])

.

(18)

All of the above Lindblad operators describe loss chan-
nels of the JPM. In general, the transmission line can
also evolve incoherently; however, the rates for these pro-
cesses are slow compared to JPM processes [55],[56], so
they are ignored in our calculations.
We are interested in the occupation probabilities of the

different JPM states, defined by the projection operators

P̂0 ≡ |0〉 〈0| P̂1 ≡ |1〉 〈1| P̂m ≡ |m〉 〈m| . (19)

To obtain a complete system of equations, we must also
include the system raising and lowering operators σ̂, σ̂†.
Putting these five operators into equation (18) leads to a
set of coupled ordinary differential equations

˙̂σ = −iω0σ̂ +
√
γTLσ̂zâin −

γ̃

2
σ̂ (20a)

˙̂σ† = iω0σ̂
† +

√
γTLâ

†
inσ̂z −

γ̃

2
σ̂† (20b)

˙̂P0 = −γ0P̂0 + (γTL + γrel)P̂1 −
√
γTLŴ + γresP̂m

(20c)

˙̂P1 = −(γTL + γrel + γ1)P̂1 +
√
γTLŴ (20d)

˙̂Pm = γ0P̂0 + γ1P̂1 − γresP̂m, (20e)
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where γ̃ is defined as γ̃ ≡ γTL + γ0 + γ1 + γrel and

Ŵ ≡ â†inσ̂ + σ̂†âin. All operators are time-dependent,
since we are in the Heisenberg picture. Here and in the
following, however, we will only indicate this time depen-
dence explicitly when it is necessary for clarity.
It should be noted that up to this point we have made

no assumptions about the input field âin, such that the
derived system of equations describes a completely gen-
eral situation. This allows us to examine different incom-
ing fields in the cavity, including both continuous drive
and various forms of pulses.

III. RATE EQUATIONS

In this section, we approximate equations (20a)-(20e)
and find optimization conditions to maximize measure-
ment efficiency in the stationary state. To simplify the
system of equations, we substitute for the operator σ̂z its
expectation value

σz(t) 7−→ 〈σz(t)〉 = P0(t)− P1(t), (21)

where P0 and P1 denote the probability to be in the
ground and excited state, respectively. We want to study
a continuous resonant drive ωs = ω0, such that

ât0(ω) = ât0
√
ω0δ(ω − ω0), (22)

since a single mode drive is described by a δ-function in
frequency space (for more detail on how to model incom-
ing radiation fields in the Heisenberg picture see [57]). In
this case, the Fourier transformation of (20a) can easily
be done:

−iω0σ̂(ω0) =−
(

iω0 +
γ̃

2

)

σ̂(ω0)

+
√
γTLâin(ω0)(P0(ω0)− P1(ω0)),

(23)

and relation (11) leads to

âout(ω0) = R(ω0)âin(ω0), (24)

with the reflection coefficient

R(ω0) = −1− 2γTL

γ̃
[P0(ω0)− P1(ω0)] . (25)

Inverse Fourier transform of Equation (24) yields the
time-domain relation

âout(t) = F−1 [R(ω0)] ∗ F−1 [âin(ω0)] (26)

= R(t)âin(t), (27)

where we have only to substitute P0/1(ω0) with P0/1(t)
in Equation (25) for R, because âin ∝ δ(ω − ω0), which
makes the resulting convolution easy to solve. The re-
flection coefficient in our system can be greater than one
if P0(t) < P1(t), because in this case the incoming signal
can be amplified by spontaneous or stimulated emission.

Note that all the equations (23)-(27) are also valid for the
non-resonant case, provided one substitutes ω0 in (22)
with ωs.
To obtain the rate equations for the system, we re-

place P̂0, P̂1, and P̂m with the corresponding occupation
probabilities P0, P1, and Pm, which leads to

Ṗ0 = −γ0P0 + (γTL + γrel)P1 (28)

−√
γTL

(〈

â†inσ̂
〉

+
〈
σ̂†âin

〉)

+ γresPm (29)

Ṗ1 = −(γTL + γ1 + γrel)P1 +
√
γTL

(〈

â†inσ̂
〉

+
〈
σ̂†âin

〉)

(30)

Ṗm = γ0P0 + γ1P1 − γresPm. (31)

Using relation (11) and the expression for R, we end up
with a system of coupled rate equations where we have
eliminated σ̂ and σ̂†:

Ṗ0 = −(4Pin + γ0)P0 + (4Pin + γTL + γrel)P1 + γresPm

(32)

Ṗ1 = 4PinP0 − (4Pin + γTL + γ1 + γrel)P1, (33)

Ṗm = γ0P0 + γ1P1 − γresPm. (34)

Here we define the parameter Pin proportional to the

incoming photon flux Nin ≡
〈

â†inâin

〉

as follows:

Pin ≡ γTL

γ̃
Nin. (35)

The overall measurement efficiency is given in the sta-
tionary state; therefore, we set Ṗ0 = Ṗ1 = Ṗm = 0.
Doing so and using the constraint P0 + P1 + Pm = 1, we
end up with an expression for stationary P0, and P1:

P0 =
1

1 + γ0

γres

− 4γTLNin

γ̃
(

4Nin
γTL

γ̃

[
γres+γ1

γres+γ0

]

+ γTL + γ1 + γrel

)(

1 + γ0

γres

)2

(36)

P1 =
4γTLNin

γ̃
(

4Nin
γTL

γ̃

[
γres+γ1

γres+γ0

]

+ γTL + γ1 + γrel

)(

1 + γ0

γres

) .

(37)

To get from equations (32)-(34) to the expressions (36),
(37) we had to assume that γres > 0, such that the expres-
sions for P0 and P1 are only valid for the case γres 6= 0.
The exact solution for the case γres = 0 is given in Ap-
pendix B.
The dark count correction is given by the counting

rate in absence of incoming photons; therefore, Γdark =
γ0P0(Nin = 0). If we use the fact that the dead time of
the counter can be expressed in terms of the reset rate as
τdead = 1/γres, we obtain the well known expression for
the dark count correction for quantum optical counters
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[28]

Γdark = γ0P0(Nin = 0) =
γ0

1 + γ0τdead
. (38)

The overall counting rate on the other hand is given by

Γcount = γ1P1(Nin) + γ0P0(Nin). (39)

With (38) and (39), the bright count rate, which de-
scribes the rate at which incoming photons are detected,
can be written as

Γbright = Γcount − Γdark. (40)

The fidelity of a photon counter can in general be char-
acterized by its efficiency, which is defined as the rate of
detected photons Γbright over the rate of incident photons
Γincident = Nin [28]. For the JPM, the efficiency is given
by

η =
Γbright

Γincident
(41)

=
1

Nin
[γ1P1(Nin) + γ0P0(Nin)− γ0P0(Nin = 0)] .

(42)

If we put the expressions for P0 and P1 into (42), we
obtain an overall expression for the detection efficiency:

η =
4γTLγres [γ1 (γ0 + γres) + γ0 (γ1 + γres)]

(γTL + γ1 + γrel)(γTL + γ1 + γ0 + γrel) (γ0 + γres)
2 ,

(43)

where we have assumed the low excitation limit (Nin ≪
1), such that the terms proportional to Nin in the denom-
inators of (36) and (37) can be ignored. The efficiency
possesses a distinct maximum (see Fig. 2) that is reached
when the following relation between rates is satisfied

γmax
TL =

√

(γ1 + γrel)(γ1 + γrel + γ0). (44)

We refer to this expression as the matching condition. If
the rates are chosen such that (44) is satisfied, we say the
JPM and the transmission line are matched, to make a
connection to impedance matching in microwave circuits
[43]. When the JPM is matched to the transmission line,
we find an efficiency

ηmax =
4(γ0 + γ1)

γ0 + 2
(

γ1 + γrel +
√

(γ1 + γrel)(γ0 + γ1 + γrel)
) ,

(45)

where we assume the reset to happen faster than the
measurement process γres > γ1, such that the efficiency
is independent of the reset rate (see Fig. 3).
If there are no dark counts and no relaxation, the effi-

ciency is given by

η =
4γTLγ1

(γTL + γ1)2
, (46)

0 1 2 3 4 5 6
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γ
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 [GHz]

η

 

 

γ
0
 = γ

rel
 = 0

γ
0
 = 10 MHz, γ

rel
=0

γ
0
 = 10 MHz, γ

rel
=0,5 GHz

γ
1
 = 1 GHz

γ
 res

 >> γ
1

FIG. 2. Efficiency η as a function of the coupling rate γTL.
The efficiency has a distinct maximum value given by equa-
tion (44) that depends on γ0, γ1, γrel. For γ0 = γrel = 0
(blue), the matching condition simplifies to (47) and the effi-
ciency reaches 1. An additional dark count rate γ0 (red) leads
to a small shift and reduction of the maximum value; both
are barely visible for typical values of γ0. On the other hand,
the inclusion of relaxation γrel (green) reduces the maximum
value significantly and furthermore leads to a visible shift of
the maximum to higher values of γTL.

and the matching condition simplifies to

γTL = γ1, (47)

where the efficiency reaches 1, in case γres > γ1.
This result coincides with the optimal matching condi-

tion found in Romero et al. [44]; however, the efficiency
was limited to 1/2. The reason for this is that Romero
et al. assumed an infinite transmission line with a JPM
in the middle. Therefore, an excitation in the JPM can
spontaneously emit into the other side of the transmis-
sion line at a rate γTL, allowing for transmission through
the JPM. For maximum efficiency γTL = γ1, both pho-
ton detection and photon transmission through the JPM
will occur with equal probability, reducing the efficiency
to 1/2. In this work, we assume a semi-infinite transmis-
sion line terminated by the JPM, such that the transmis-
sion process is not possible, which leads to a maximum
efficiency of 1.
In our case there are four main processes that limit de-

tector efficiency: coupling losses (reflection), energy re-
laxation, dark counts, and dead time. Usually one distin-
guishes between two separate efficiencies: the efficiency
due to coupling losses ηloss and the intrinsic quantum
efficiency of the detector ηdet. Here, ηloss includes the
effect of rate mismatch between the JPM and the trans-
mission line, as described above. On the other hand, ηdet
includes the effects of dark counts, relaxation, and dead
time. The overall efficiency can be written as the product
of these two: η = ηloss · ηdet.
In the ideal case (γ0 = γrel = 0 and γres ≪ γ1, so that

ηdet = 1), the efficiency is only limited by ηloss. Con-
dition (47) then determines the coupling rate for which
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FIG. 3. Efficiency η as a function of the reset rate γres. For
small values of γres, increasing the reset rate leads to a strong
enhancement of the efficiency up to a point where the reset
is roughly as fast as the decay into the measurement state
(γres ≈ γ1). From then on the efficiency stays constant with
increasing γres, since the reset is faster than the average mea-
surement time.

coupling loss is zero, such that ηloss = 1 and we reach
unit efficiency (see Fig. 2). This is exactly the point
where all incoming photons reach the measurement state
of the counter and all the incoming power is transferred
into a measured signal.

In the non-ideal case where we have dark counts and
relaxation, even at the matching point (44) the efficiency
is limited to a value smaller than one (since ηdet < 1),
such that the optimal power matching condition (44) can
only lead to an overall efficiency of ηdet (see Fig. 2).

In Fig. 3, we see that the reset time also has a signif-
icant influence on ηdet. For γres < γ1, the efficiency in-
creases rapidly with increasing γres up to the point where
γres ≈ γ1, after which the efficiency is approximately con-
stant if we increase γres. This can be explained by the fact
that for a system with γres ≈ γ1, the reset happens with
the same rate as the measurement, such that increasing
γres no longer has an influence on ηdet.

In many applications to detection of continuous-wave
signals, it is helpful to express detector performance in
terms of noise equivalent power (NEP), the effective noise
power per unit bandwidth referred to the detector input.
In the case of a photon counter with dark count rate γ0
operated for an integration time τ , Poisson uncertainty
in the number of dark counts is given by σN =

√
γ0τ .

Expressing this uncertainty as a photon flux at the input,
we find

σP =
~ω0

ητ

√
γ0τ . (48)

If we choose an integration time of 0.5 s, corresponding
to a detection bandwidth of 1 Hz, we obtain the standard

expression for the NEP of a photon counter [28, 58]

NEP =
~ω0

η

√

2γ0; (49)

if we put in the expression (43) for JPM efficiency, we
obtain the NEP for the JPM. For the JPM parame-
ters γrel = 33 kHz [4], γ1 = 1 GHz, γ0 = γ1/100 and

ω0/2π = 5 GHz, we find an NEP of 2 × 10−20 W/
√
Hz

at the matching point. This is to be compared against
NEP of order 1 × 10−17 W/

√
Hz achieved by transition

edge sensors (TES) [59] and microwave kinetic induc-
tance detectors (MKIDs) [60] at higher frequencies in the
range from 40-300 GHz, relevant for cosmic microwave
background (CMB) studies. It is possible that Joseph-
son junctions based on higher-gap materials such as NbN
could be used to realize JPMs with plasma frequencies
in the tens of GHz range, suitable for low-noise detection
of the CMB.

IV. MEAN FIELD APPROACH

In this section, we use a mean field approach (see [61])
to simplify equations (20a)-(20e). This approach is a bet-
ter approximation than the rate equation approach of the
previous section, since it includes first order correlations
between the transmission line and the JPM.
Before solving the equations, we take the expectation

value with respect to the transmission line state, trac-
ing out the degrees of freedom of the transmission line.
Because of the normal ordering of the Hamiltonian (8),
taking the expectation value of the transmission line ig-
nores vacuum contributions to the system.
In the following, we only consider one measurement

event (γres = 0) and look at the pure measurement prob-
ability to define the efficiency of the counter, since this
value corresponds to the efficiency in the multi-count case
(for short enough reset time). Additionally, we ignore
dark counts (γ0 = 0) since we have seen in the previous
section that typical dark count rates do not change the
results significantly. For simplicity we also assume that
we do not have any relaxation (γrel = 0).

A. Continuous Drive

We assume that we have a continuous, coherent drive
at frequency ω0 and photon amplitude α, such that the
initial state reads

|Φ(t = 0)〉 = |0〉JPM ⊗ |αω0〉TL = |0, αω0〉 , (50)

where the JPM is arranged in the ground state before
measurement and the transmission line is in a coherent
state of amplitude α and frequency ω0. We can take the
expectation value in the system of equations (20a)-(20e)
with respect to state (50) (note that the time depen-
dence is included in the operators, such that |Φ〉 stays
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FIG. 4. (a) Occupation probabilities as a function of the measurement time tm. (b) Measurement probability as a function
of |α|2 for a measurement time of tm = 10 ns and matched rates γTL = γmax

TL (before steady state is reached). One sees a
saturation at around 0.2 photons, such that increasing |α|2 further does not increase the measurement probability. (c),(d)
Detection probability versus the rates γTL and γ1 after tm = 10 ns (before stationary state is reached) for two different values
of |α|2. (c) For small values of |α|2, the optimal measurement regime coincides with the matching condition (47) found in
Section II. (d) For high values of |α|2, we see a plateau behavior, such that the measurement probability is independent of γTL.

constant). To trace out the transmission line degrees of

freedom, we apply âin to the right and â†in to the left,
which gives

âin |0, αω0〉 = − i√
2π

α
√
ω0 exp[−iω0t] |0, αω0〉 . (51)

In addition we apply the transformation σ̂ 7−→
exp[−iω0t]σ̂ and σ̂† 7−→ exp[iω0t]σ̂

† in order to make
the equations time independent. After these steps, we fi-
nally end up with equations of motion for the expectation
values of the JPM operators:

〈

˙̂σ
〉

= − γ̃

2
〈σ̂〉 − i

ωR

2

(〈

P̂0

〉

−
〈

P̂1

〉)

(52a)

〈

˙̂σ†
〉

= − γ̃

2

〈
σ̂†
〉
+ i

ωR

2

(〈

P̂0

〉

−
〈

P̂1

〉)

(52b)
〈
˙̂P0

〉

= γTL

〈

P̂1

〉

− i
ωR

2

(
〈σ̂〉 −

〈
σ̂†
〉)

(52c)
〈
˙̂P1

〉

= −γ̃
〈

P̂1

〉

+ i
ωR

2

(
〈σ̂〉 −

〈
σ̂†
〉)

(52d)
〈
˙̂Pm

〉

= γ1

〈

P̂1

〉

, (52e)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|α|2

γ  T
L

m
ax

/γ
1

t
m

 = 10 ns

ω
0
/2π = 5 GHz

FIG. 5. Dependence of γmax

TL /γ1 on |α|2 for the continuous
drive case. For small values of |α|2, the optimal regime is the
matching condition (47) found in Section III. For higher val-
ues of |α|2 the optimal measurement regime shifts to smaller
ratios γmax

TL /γ1, since the Rabi frequency is proportional to
√

γTL|α|2.
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where ωR ≡
√

2|α|2γTLω0/π denotes the Rabi frequency,

and where we have used the relation 〈σ̂z〉 =
〈

P̂0

〉

−
〈

P̂1

〉

to eliminate 〈σ̂z〉. This system of equations can be solved
numerically (see Fig. 4).

We are mostly interested in the probability of detection
〈

P̂m

〉

. For every choice of parameters, the measurement

probability reaches one after some time since we assume a
continuous drive (see Fig. 4(a)), so that energy transfer
to the JPM continues for as long as needed to tunnel
to the measurement state. The switching time depends
on the choice of parameters, and we see that for small
values of |α|2, the condition that minimizes this time is
exactly the matching condition we found in Section II
(see Fig.4(c) and Fig. 5).

For higher values of |α|2, the matching condition shifts
to smaller values of γTL (see Fig. 5). This can be ex-
plained by the fact that the transition time to the |1〉
state in the JPM is determined by the Rabi frequency
ωR, which is proportional to the product of γTL and |α|2.
Therefore, higher values of |α|2 lead to smaller values of
γTL in the matching condition, since ωR has to be in
the range of γ1. If we match the rates and look at the
|α|2 dependence of the measurement probability, we see
a saturation point at a fixed value of |α|2 (see Fig. 4(b)).
This means that adding more photons does not increase
the measurement probability, since the JPM can only
measure one photon (see Fig. 4(b)). The measurement
probability is one at this saturation point if the measure-
ment time is longer than the required time for a tunneling
process, and smaller than one otherwise (see Fig. 4(b)).
Moreover, we find that for high values of |α|2 there is a
large region where the measurement probability is inde-
pendent of γTL and only varies with γ1 (see Fig. 4(d)).

In Appendix B, we solve the time evolution of the rate
equations of Section II analytically to compare them to
the results reached in this Section for the continuous drive
case. The comparison is shown in Fig. 6. We see that the
results of both approaches are very similar for both the
classical and the quantum regimes. In Appendix C, we
additionally provide an analytical solution for the con-
tinuous mean field approach using the Laplace transfor-
mation.

B. Pulses

For applications to qubit measurement [38] we wish to
perform threshold detection on an input pulse of n pho-
tons. Therefore, we want to extend the above solutions
to the more general case of an arbitrary input waveform.
To do so, we add a form factor f(ω) that describes the
pulse into the expression for ât0(ω)

âpulse(ω) = f(−ω)ât0(ω)

â†pulse(ω) = f(ω)â†t0(ω),
(53)

where we assume the form factor to be real. We incor-
porate this form factor into the system of equations and
follow the same procedure as in the previous Section.
By using the Fourier relation

∫∞

−∞
dωf(±ω) exp (∓i(ω − ω0)t) = f(t), we can bring

the resulting system of equations to the following form:

〈

˙̂σ
〉

= − γ̃

2
〈σ̂〉 − i

ωR

2
f(t)

(〈

P̂0

〉

−
〈

P̂1

〉)

(54a)

〈

˙̂σ†
〉

= − γ̃

2

〈
σ̂†
〉
+ i

ωR

2
f(t)

(〈

P̂0

〉

−
〈

P̂1

〉)

(54b)
〈
˙̂P0

〉

= γTL

〈

P̂1

〉

− i
ωR

2
f(t)

(
〈σ̂〉 −

〈
σ̂†
〉)

(54c)
〈
˙̂P1

〉

= −γ̃
〈

P̂1

〉

+ i
ωR

2
f(t)

(
〈σ̂〉 −

〈
σ̂†
〉)

(54d)
〈
˙̂Pm

〉

= γ1

〈

P̂1

〉

, (54e)

where ωR ≡
√

2|α|2γTLωs/π. This system of equations
is similar that in the previous section, apart from an ad-
ditional factor f(t) that specifies the pulse shape. Using
these equations, we can solve for the time evolution of
the state occupations for an arbitrary pulse shape.
Here, we study two different shapes, an exponential

damped pulse and a Gaussian pulse. The first pulse
shape is especially relevant for qubit measurement, since
it describes the shape of a pulse created from a sponta-
neous emission source [62]. This pulse is described by the
form factor

f(t) = exp (−κt) , (55)

with signal frequency ωs of the pulse and duration τe =
2π/κ. We assume the signal frequency to be equal to the
JPM transition frequency, ωs = ω0.
Next, we study the most natural choice for a few-

photon wave packet, namely the Gaussian pulse

f(ω) =
1

(2πσ2ω2
s)

1
4

exp

(

− (ω − ωs)
2

4σ2

)

f(t) =

(
8πσ2

ω2
s

) 1
4

exp
(
−σ2t2

)
,

(56)

with duration τG = 2π/σ. We assume the signal fre-
quency ωs to coincide with the transition frequency of
the JPM (ωs = ω0). The results are similar to the re-
sults for the exponentially damped pulse, except that σ
plays the role of κ in this case (see Fig. 7).
For small photon numbers |α|2, we observe the match-

ing condition (47) we found in Section II. Increasing |α|2
shifts the maximum regime to higher values of γ1 and
smaller values of γTL, for the same reason as in the con-
tinuous drive case. The behavior of γmax

TL /γ1 for a Gaus-
sian pulse is shown in Fig. 7(b) for two different values
of σ. We see that the ratio starts at one and then im-
mediately drops to smaller values before asymptotically
tending to zero in the semi-classical regime. The move-
ment of the optimal measurement region is also shown in
Fig. 7(e-f).
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FIG. 6. Comparison of rate equation (blue) and mean field (red) approaches, in the quantum (left) and classical regimes (right).
The two approaches give similar results apart from the absence of Rabi oscillations in the rate equation approach, where the
JPM is treated classically.

On the other hand, the maximum of the measurement
probability for fixed values of |α|2 depends on the param-
eters κ and σ for the exponentially damped and Gaus-
sian pulse, respectively (see Fig. 7(c),(d)). In the expo-
nentially damped case, the measurement probability in
the steady state is unity for very small κ (long pulses);
hence it coincides with the continuous drive result in this
regime. If we go over to shorter pulses, κ plays an impor-
tant role in the overall measurement probability. For the
Gaussian pulse, we do not see a constant plateau where
Pm = 1 for very small values of σ; rather, Pm only reaches
unity for σ = 0, which corresponds to a continuous drive.
For the exponentially damped pulse, it is also possible

to obtain analytical results using the Laplace transfor-
mation. We find the following expression for the mea-
surement probability in the stationary state

〈

P̂m(t)
〉

=
ω2
R

4κ
(

κ+ γ̃
2

)(

1 + γTL

γ1

)

−
∞∑

l=0

ω2
R

2

1 + 4 κ
γ1

(

κ+ γ̃
2

)(

1 + γTL

γ1

)

〈

P̂m(0)(l)
〉

(2κ)−(l+1)
.

(57)

For given initial conditions of the system and starting
with the set of equations (54a)-(54e), one can calculate
〈

P̂m(0)(l)
〉

to arbitrary order (for more details see Ap-

pendix D).

V. CONCLUSION

In conclusion, we have derived a general set of equa-
tions that describe a two-level photon counter strongly
coupled to a transmission line. We have shown that one
can reach high-efficiency photon detection of a travel-
ing microwave state using appropriate matching of sys-

tem parameters. The conditions vary for different input
states; in general, for low input power the coupling rate
between the counter and the transmission line should be
equal to the measurement rate. At higher power, the
matching condition shifts, such that the coupling rate
should be smaller than the measurement rate.

The approach described here can be applied to arbi-
trary input pulses and thus modified to fit the particular
radiation source of any experiment. As a result, this work
presents a guide to tune parameters to reach the optimal
measurement efficiency for a range of experimental situ-
ations. Moreover, the presented method can be extended
to any lossy two-level system coupled to a semi-infinite
resonator.
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FIG. 7. Results for shaped pulse inputs. (a) Time evolution of the state occupation probabilities for an exponentially damped
pulse with mean photon number |α|2 = 1. (b) Dependence of the optimal choice of rates γmax

TL /γ1 on |α|2 for a Gaussian pulse.
(c),(d) Dependence of the optimal detection probability depending on κ and σ for exponentially damped and Gaussian pulses,
respectively. (e), (f) Shift of the optimal measurement region for different values of |α|2 in the Gaussian case.

Appendix A: Hamiltonian of the system

From the circuit diagram Fig. 1 we can derive the
Lagrangian of the system:

L = LTL + EJ cos(ϕJ ) + (Ib +∆I)

(
Φ0

2π

)

ϕJ

+
1

2
CJ

(
Φ0

2π

)2

ϕ̇2
J

= LTL + LJPM +∆I

(
Φ0

2π

)

ϕJ +
1

2
CJ

(
Φ0

2π

)2

ϕ̇2
J ,

(A1)

where LTL is the bare transmission line Lagrangian (sum
of harmonic oscillators), ϕJ the phase of the JPM, Ib
the bias current, EJ the Josephson energy, CJ the junc-
tion capacitance, Φ0 the flux quantum, and ∆I the addi-
tional current coming from the transmission line. Here,
LJPM ≡ EJ cos(ϕJ ) + Ib

Φ0

2πϕJ is the Lagrangian of the
JPM. The last term leads to an interaction between the
JPM and the transmission line. Using the Legendre
transformation, we obtain the Hamiltonian of the sys-
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tem:

H = HTL +HSYS +∆I
Φ0

2π
ϕJ , (A2)

where HTL is the Hamiltonian describing the transmis-
sion line and HJPM is the Hamiltonian of the JPM.
We want to take a closer look at the interaction term.

If we use the normal procedure of quantizing the trans-
mission line and the JPM, we get the following expression
for the current [50] and phase operators [49]:

∆Î =

√

~ωs

4πZ0

∫ ∞

0

dω
(
â†(ω) + â(ω)

)
(A3)

ϕ̂J =
i√
2

(
2EC

EJ

) 1
4 (

σ̂† − σ̂
)
, (A4)

where â,â† and σ̂,σ̂† are the raising and lowering opera-
tors of the cavity field and the JPM states, respectively.
Equations (A2)-(A4) assuming an rotating-wave approx-
imation lead to the following expression for the interac-
tion part of the Hamiltonian (infinite number of input
modes):

ĤINT = i~g

∫ ∞

−∞

dω(â†(ω)σ̂ − σ̂†(ω)â), (A5)

with g ≡ (ωsZJ/8πZ0)
1/2, where ZJ is the junction

impedance.

Appendix B: Time dynamics of the rate equations

Here we want to study the time evolution of the sys-
tem of rate equations (32)-(34) for a single measurement
event (γres = 0). Using an algebraic computer software
package, we obtain the following solution for the occupa-
tion probability of the excited state for initial conditions
P0 = 1 and P1 = 0:

P1(t) = β sinh (Γt) , (B1)

with the constant

β =
4γTLω̃

√

(γTL + γ1)
4
+ 16γ2

TL (γTL + γ1) ω̃ + 64γ2
TLγ

2
1

(B2)

and the rate

Γ =

√

16γ2
TLω0γ̃ + 64γ2

TLω̃
2 + γ̃4 + γ̃2 + 8γTLω̃

2γ̃
, (B3)

with ω̃ ≡ |α|2ω0/2π. Integration of (B1) from t′ = 0
to t′ = t and multiplication with γ1, together with the
boundary condition Pm(0) = 0, lead to an expression for
the measurement probability:

Pm(t) =
βγ1
Γ

[cosh (Γt)− 1] . (B4)

In Section III we use expression (B4) to compare the rate
equation approach with the mean field approach.

Appendix C: Analytical solution for the continuous

mean field case

Here we give an analytical solution of the system of
equations derived in Sec. IVA. First we use the Laplace
transformation to rewrite the system:

s 〈σ̂(s)〉 = − γ̃

2
〈σ̂(s)〉 − i

ωR

2

(〈

P̂0(s)
〉

−
〈

P̂1(s)
〉)

(C1a)

s
〈
σ̂†(s)

〉
= − γ̃

2

〈
σ̂†(s)

〉
+ i

ωR

2

(〈

P̂0(s)
〉

−
〈

P̂1(s)
〉)

(C1b)

s
〈

P̂0(s)
〉

= γTL

〈

P̂1(s)
〉

− i
ωR

2

(
〈σ̂(s)〉 −

〈
σ̂†(s)

〉)
+ 1

(C1c)

s
〈

P̂1(s)
〉

= −γ̃
〈

P̂1(s)
〉

+ i
ωR

2

(
〈σ̂(s)〉 −

〈
σ̂†(s)

〉)

(C1d)

s
〈

P̂m(s)
〉

= γ1

〈

P̂1(s)
〉

. (C1e)

The first two equations give the expressions

〈σ̂(s)〉 = −i
ωR

2

s + γ̃
2

(〈

P̂0(s)
〉

−
〈

P̂1(s)
〉)

(C2)

〈
σ̂†(s)

〉
= i

ωR

2

s + γ̃
2

(〈

P̂0(s)
〉

−
〈

P̂1(s)
〉)

, (C3)

which can be put into the equation for
〈

P̂1(s)
〉

:

s
〈

P̂1(s)
〉

= −γ̃ +
ωR

2

s+ γ̃
2

(〈

P̂0(s)
〉

−
〈

P̂1(s)
〉)

. (C4)

Using the conservation of probabilities in Laplace space

〈

P̂0(s)
〉

+
〈

P̂1(s)
〉

+
〈

P̂m(s)
〉

=
1

s
, (C5)

we can eliminate
〈

P̂0(s)
〉

in (C4):

s
〈

P̂1(s)
〉

= −γ̃ +
ωR

2

s+ γ̃
2

(
1

s
− 2

〈

P̂1

〉

(s)−
〈

P̂m(s)
〉)

.

(C6)

Additionally, we can eliminate
〈

P̂1(s)
〉

in (C6) with the

equation for
〈

P̂m(s)
〉

(C1e)

〈

P̂m(s)
〉

=
ω2

R

2

s
(

s+ γ̃
2

)[

s2

γ1
+ γ̃s

γ1
+

ω2
R
2

s+ γ̃
2

(
2s
γ1

+ 1
)] . (C7)

To show that the numerical results of Section III give the

right stationary solution, we can calculate lim
t→∞

〈

P̂m(t)
〉
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from (C7) using the relation between limits in Laplace
space and real space

lim
t→∞

g(t) = lim
s→0

sL [g(t)] . (C8)

We find

lim
t→∞

〈

P̂m(t)
〉

= lim
s→0

s
〈

P̂m(s)
〉

= 1. (C9)

Therefore the measurement probability in the stationary
state is always one, as we have seen in the numerical
results.

We next transform (C7) back to real space in order to
get an analytical solution for the time evolution of the
measurement probability. This back transformation can
be done as in Section IV using the residue theorem. The
singularities of (C7) are

s1 = 0

s2 = − γ̃

2
+

γ̃2 − ω2
R

2
[

54(γ̃ − γ1)ω2
R + 3

√

36ω2
Rγ̃

4 + 36(γ̃ − 3γ1)(5γ̃ − 3γ1)ω4
R + 194ω6

R

] 1
3

+

(

27γ̃ω2
R

2 − 27γ1ω
2
R

2 +

√

729
4 (γ1 − γ̃)2ω4

R + 4
(

3ω2
R − 3γ̃2

4

)3
) 1

3

3 · 2 2
3

s3 = − γ̃

2
+

(
1 + i

√
3
) (

3ω2
R + 3γ̃3

4

)

3 · 2 2
3

(

− 27γ1ω2
R

2 +
27γ̃ω2

R

2 +

√

4
(

3ω2
R − 3γ̃2

4

)3

+
(

− 27γ1ω2
R

2 +
27γ̃ω2

R

2

)2
) 1

3

−

(
1− i

√
3
)

(

− 27γ1ω
2
R

2 +
27γ̃ω2

R

2 +

√

4
(

3ω2
R − 3γ̃2

4

)3

+
(

− 27γ1ω2
R

2 +
27γ̃ω2

R

2

)2
) 1

3

6 · 2 1
3

s4 = s∗3,

and the back transformation of (C7) is given by

〈

P̂m(t)
〉

=
ω2
R

2

3∑

i=1

i6=j 6=k

exp (−sit)

αi (αi − αj) (αi − αk, )
, (C10)

where αi are the corresponding residues. Due to the first
order of the singularities (all other cases are trivial), the

residues are given by

Res
(

si,
〈

P̂m(s)
〉)

= lim
s→si

〈

P̂m(s)
〉

(s− si) . (C11)

Appendix D: Analytical solution for the

exponentially damped pulse

In this appendix, we calculate an analytical solution
for the exponentially damped pulse. We start with the
Laplace transformation of the system of equations

s 〈σ̂(s)〉 = − γ̃

2
〈σ̂(s)〉 − i

ωR

2

(〈

P̂0(s + κ)
〉

−
〈

P̂1(s + κ)
〉)

(D1a)

s
〈
σ̂†(s)

〉
= − γ̃

2

〈
σ̂†(s)

〉
+ i

ωR

2

(〈

P̂0(s + κ)
〉

−
〈

P̂1(s + κ)
〉)

(D1b)

s
〈

P̂0(s)
〉

= γTL

〈

P̂1(s)
〉

− i
ωR

2

(
〈σ̂(s + κ)〉 −

〈
σ̂†(s + κ)

〉)
+ 1 (D1c)

s
〈

P̂1(s)
〉

= −γ̃
〈

P̂1(s)
〉

+ i
ωR

2

(
〈σ̂(s + κ)〉 −

〈
σ̂†(s + κ)

〉)
(D1d)

s
〈

P̂m(s)
〉

= γ1

〈

P̂1(s)
〉

, (D1e)
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where we have used the relation

L [g(t) exp(−κt)] = g(s+ κ), (D2)

which holds for an arbitrary function g(t) whose Laplace
transformation exists.
To simplify the equations we have to calculate

〈σ̂(s+ κ)〉 and
〈
σ̂†(s+ κ)

〉
, which can be done by multi-

plying (D1a) and (D1b) with exp(−κt):

〈σ̂(s+ κ)〉 = −i
ω2

R

2

s+ κ+ γ̃
2

(〈

P̂0(s+ 2κ)
〉

−
〈

P̂1(s+ 2κ
)〉

(D3)

〈
σ̂†(s+ κ)

〉
=

i
ω2

R

2

s+ κ+ γ̃
2

(〈

P̂0(s+ 2κ)
〉

−
〈

P̂1(s+ 2κ)
〉)

.

(D4)

Putting (D3) and (D4) into (D1c) leads to

s
〈

P̂0(s)
〉

= γTL

〈

P̂1(s)
〉

+ 1

−
ω2

R

2

s+ κ+ γ̃
2

(〈

P̂0(s+ 2κ)
〉

−
〈

P̂1(s+ 2κ)
〉)

.

(D5)

To eliminate
〈

P̂0(s)
〉

in this expression, we can use the

conservation of probabilities in Laplace space

〈

P̂0(s)
〉

=
1

s
−
〈

P̂1(s)
〉

−
〈

P̂m(s)
〉

(D6)

〈

P̂0(s+ 2κ)
〉

=
1

s+ 2κ
−
〈

P̂1(s+ 2κ)
〉

−
〈

P̂m(s+ 2κ)
〉

,

(D7)

which gives

s

(
1

s
−
〈

P̂1(s)
〉

−
〈

P̂m(s)
〉)

− 1 = γTL

〈

P̂1(s)
〉

−
ω2

R

2

s+ κ+ γ̃
2

[
1

s+ 2κ
− 2

〈

P̂1(s)
〉

−
〈

P̂m(s)
〉]

.

(D8)

Additionally, we can use (D1e) to eliminate
〈

P̂1(s)
〉

and
〈

P̂1(s+ κ)
〉

:

s
〈

P̂m(s)
〉

= γ1

〈

P̂1(s)
〉

(D9)

(s+ 2κ)
〈

P̂m(s+ 2κ)
〉

= γ1

〈

P̂1(s+ 2κ)
〉

. (D10)

Finally, we end up with the following equation:

〈

P̂m(s)
〉

+ f(s)
〈

P̂m(s+ 2κ)
〉

=
ω2

R

2

(s+ 2κ)
(

s+ κ+ γ̃
2

)(

s+ s(γTL+s)
γ1

) ,
(D11)

with the rational function

f(s) ≡
ω2

R

2

(

1 + 2s+4κ
γ1

)

s+ s(γTL+s)
γ1

. (D12)

We are interested in the measurement probability in the

stationary state, so we want to calculate lim
t→∞

〈

P̂m

〉

(t).

To do so we use relation (C8). Taking the limit on the
right hand side of (D12) is straightforward, but the left
hand side is more difficult. Taking a closer look at the
left hand side we see

lim
t→∞

L−1
[〈

P̂m(s)
〉

+ f(s)
〈

P̂m(s+ 2κ)
〉]

= lim
t→∞

L−1
[〈

P̂m(s)
〉]

︸ ︷︷ ︸

= lim
t→∞

〈P̂m〉(t)

+ lim
t→∞

∫ t

0

dt′f(t′) exp [−2κ(t− t′)]
〈

P̂m(t− t′)
〉

︸ ︷︷ ︸

≡(∗)

.

(D13)

The first term gives us the desired limit, while the second
one describes a memory kernel that depends on the past
of the system.
To solve the integral in (*), we first have to transform

f(s) into real space. Since it is a rational function with
only first order singularities (the other cases are trivial),
f(t) can be calculated using the residue theorem

f(t′) =
∑

i

αi exp (sit
′) , (D14)

where si are the singularities of the function and αi the
corresponding residues. The singularities are s1 = 0,

s2 = −(κ + γ̃
2 ), and s3 = −γ̃. Since

〈

P̂m(t− t′)
〉

is

bounded by one, the limit of the integral is determined
by the exponential parts. s2 and s3 both damp the in-
tegrand; therefore, only the first singularity s1 gives a
contribution to the limit of the integral. As a result, (*)
simplifies to

(∗) = lim
t→∞

α1

∫ t

0

dt′ exp [−2κ (t− t′)]
〈

P̂m(t− t′)
〉

(u=t−t′)
= α1

∫ ∞

0

du exp [−2κu]
〈

P̂m(u)
〉

.

(D15)

If we evolve
〈

P̂m(u)
〉

in a Taylor expansion around zero,

we can solve the integral:

(∗) = α1

∞∑

l=0

〈

P̂m(0)(l)
〉

l!

∫ ∞

0

du exp [−2κu]ul

︸ ︷︷ ︸

=l!(2κ)−(l+1)

=
∞∑

l=0

α1

(2κ)−(l+1)

〈

P̂m(0)(l)
〉

,

(D16)
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FIG. 8. Comparison between the analytical solution up to
fifth order and the numerical solution for the exponentially
damped pulse with different values of κ, as a function of |α|2.
For small κ and large |α|2 the deviation is quite high, but for
increasing κ the approximation fits the numerical results well.
For κ = 5 GHz the deviation is almost zero.

where
〈

P̂m(0)(l)
〉

denotes the l th time derivative (at

t = 0). Calculating the residue

α1 = lim
s→s1

f(s)(s− s1) =
ω2
R

2

1 + 4 κ
γ1

(

κ+ γ̃
2

)(

1 + γTL

γ1

)

(D17)

and putting this all together in equation (D11), we finally
end up with an expression for the measurement proba-
bility in the stationary state:

lim
t→∞

〈

P̂m(t)
〉

= lim
s→0

s
ω2

R

2

(s+ 2κ)
(

s+ κ+ γ̃
2

)(

s+ s(γTL+s)
γ1

)

−
∞∑

l=0

ω2
R

2

1 + 4 κ
γ1

(

κ+ γ̃
2

)(

1 + γTL

γ1

)

〈

P̂m(0)(l)
〉

(2κ)−(l+1)

=
ω2
R

4κ
(

κ+ γ̃
2

)(

1 + γTL

γ1

)

−
∞∑

l=0

ω2
R

2

1 + 4 κ
γ1

(

κ+ γ̃
2

)(

1 + γTL

γ1

)

〈

P̂m(0)(l)
〉

(2κ)−(l+1)
.

(D18)

The expression up to fifth order has the following form

lim
t→∞

〈

P̂m(t)
〉

≈ ω2
R

4κ
(

κ+ γ̃
2

)(

1 + γTL

γ1

)

(

1− ω2
R

16κ2

)

.
(D19)

The validity of the approximation up to fifth order is
determined by the ratio α

κ . The smaller this ratio, the
better the approximation (see Fig. 8).
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