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Scalable two- and four-qubit parity measurement with a threshold photon counter
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Parity measurement is a central tool for many quantum information processing tasks. In this work, we propose
a method to directly measure two- and four-qubit parity with low overhead in hardware and software while
remaining robust to experimental imperfections. Our scheme relies on dispersive qubit-cavity coupling and
photon counting that is sensitive only to intensity; both ingredients are widely realized in many different quantum
computing modalities. For a leading technology in quantum computing, superconducting integrated circuits, we
analyze the measurement contrast and the back action of the scheme and show that this measurement comes
close enough to an ideal parity measurement to be applicable to quantum error correction.
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I. INTRODUCTION

The ability to measure a quantum system in a high-fidelity
and quantum nondemolition (QND) way is fundamental to
most aspects of quantum information processing (QIP). In
the circuit quantum electrodynamics (cQED) community,
great success has been achieved in qubit readout by linear
amplification and homodyne detection of the signal in a disper-
sively coupled microwave resonator (cavity) [1–4]. However,
the macroscopic size and complicated circuitry required for
this readout scheme are a major obstacle to scalability. For
this reason a simpler, scalable, high-fidelity, QND single-
qubit readout scheme based on threshold photodetection was
recently introduced [5].

In addition, QND readout of multiqubit operators is
increasingly important in contemporary QIP. In particular,
readout of multiqubit parity has applications to quantum error
correction [6] such as the surface code [7], quantum phase
estimation [8], the implementation of multiqubit gates [9,10],
and entanglement generation [11–13]. Parity measurement
of two superconducting qubits has been proposed [14] and
demonstrated [12,15], as has Bell-state measurement [16] and
parity measurement of a cavity state using a superconducting
qubit [17]. However, adapting these protocols to more than
two qubits requires a significant increase in complexity, either
in the number of resonators necessary for amplification-based
direct parity measurement [18,19] or in the number of costly
entangling gates in gate-based parity measurement.

In this work, we propose a protocol for QND parity readout
of multiple qubits coupled to one resonator, over a time scale
comparable to that of a single entangling gate. We describe the
physical model, briefly review the similar protocol of single-
qubit readout [5], present the protocol for N -qubit single-shot
parity measurement, and analyze the main sources of error.

We describe parity measurement on N qubits, each coupled
to the same single-mode cavity, which is coupled to a tunable
photon counter. Each qubit of transition frequency ωQn

couples
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to the cavity via a Jaynes-Cummings interaction in the disper-
sive regime, leading to the cavity-qubit Hamiltonian (� = 1)

H = HD + ωCâ†â +
N∑
n

(
χQn

â†â − ωQn
− χQn

2

)
σ̂ n

z , (1)

where χQn
≡ g2

Qn
/(ωC − ωQn

) is the dispersive shift
for coupling strength gQn

and HD ≡ A(t)(â + â†) is a
time-dependent classical drive that controls the cavity. For
this Hamiltonian the computational basis states are the
eigenvectors of

∑N
n σ̂ n

z . We assume that the qubits are far
enough detuned that cavity-mediated qubit-qubit coupling is
negligible. This model is sufficiently general to encompass
many qubit architectures [1,3,12,18,20,21].

Our protocol can be applied to any physical system with a
threshold photon counter and strong dispersive coupling. In the
microwave regime, where photon counting is possible with a
Josephson photomultiplier (JPM) [22], other examples include
nitrogen-vacancy centers in diamond [23], Rydberg atoms
[24,25], and lateral quantum dots [26]. At higher frequencies,
where photon counters are commonplace, candidate systems
include trapped atoms [27] and self-assembled quantum
dots [28].

II. PARITY READOUT PROTOCOL

Described in Ref. [5], cavity-mediated, QND, single-qubit
measurement with a photon counter is a three-stage protocol.
First the cavity, initialized to vacuum, is driven at its shifted
resonance frequency for an excited qubit, populating the cavity
conditionally upon the state of the qubit. Next, the photon
counter distinguishes between the conditional cavity states
(one of which is above and one of which is below its threshold)
and therefore detects the state of the qubit. Finally, a microwave
drive resets the cavity to the vacuum. Two properties of the
counter are crucial: it should be an intensity detector that
responds to the total energy only (insensitive to phase), and
it should have threshold behavior at a photon number that is
well between vacuum and the selectively excited state of the
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FIG. 1. (Color online) (a) Schematic of the experimental design
showing the cavity, N coupled qubits, and the photon counter (a JPM
in this case). (b) and (c) Illustration of the dispersive shifts on the
cavity for two- and four-qubit computational basis states.

cavity. Number resolution and single-photon sensitivity are
not required.

During the drive stage, the reduced Hamiltonian of the
cavity coupled to a single qubit,

ĤC = ω̃Câ†â + A(t)(â + â†), (2)

is that of a single-mode oscillator with resonance frequency
ω̃C = ωC + χ̃Q, where χ̃Q = sχQ encodes the state of the qubit
through s = ±1, with s being the respective eigenvalue of
σ̂z. By a carefully timed classical drive at frequency ωD =
ωC − χQ, we put the cavity in a high-amplitude coherent state
if the qubit is excited but in the vacuum state if the qubit is in its
ground state, thus dephasing the qubit. The cavity is populated
conditionally upon the qubit having odd parity (excited state),
via the unitary

ÛD = P̂ E
Q ⊗ IC + P̂ O

Q ⊗ D̂(β), (3)

where D̂(β) is the displacement operator. Here P̂ E
Q and P̂ O

Q are
projectors onto the even- and odd-parity subspaces, which are
projectors onto the ground and excited states for single-qubit
readout, while for N > 1 they are sums of projectors onto a
set of states spanning each parity subspace. This is a quantum
eraser that transfers parity information to the cavity amplitude
and all other qubit-state information to the phase.

Now consider two qubits coupled to the cavity with equal
dispersive shifts. For the computational basis states the total
dispersive shift on the cavity is χ̃Q = ±2χQ when both qubits

are in the same eigenstate (even parity) and χ̃Q = 0 when the
qubits are in different eigenstates (odd parity), as illustrated
in Fig. 1(b). By driving with frequency ωD = ωC we entangle
the qubit parity subspaces with distinguishable cavity states,
implementing the unitary of Eq. (A12). At the end of the drive
pulse A(t) = a0 cos (ωDt + φ)�(tD − t), the qubit-dependent
cavity occupations are

|αE|2 =
(

a0

	D

)2 1 − cos (	DtD)

2
, |αO|2 =

(
a0

2
tD

)2

,

where 	D = ω̃C − ωD. Setting ωD = ωC gives |	D| = 2χQ

for even-parity states, and therefore, |αE|2 = 0 at tD = π/χQ

(	D = 0 for the odd states). As αE = 0, the even-parity
states are indistinguishable, and all state information other
than parity has been erased. Thus, while coherence between
subspaces with different parities is reduced to 〈αO|αE〉,
intrasubspace coherence is protected, unlike in direct parity
measurement [12].

For N > 2 qubits, the degeneracy within the odd and even
subspaces splits, and we cannot perform parity measurement
by a single-frequency cavity drive. However, with

A(t) = a0

∑
i

cos
(
ωDi

t + φ
)

0 � t � tD, (4)

where ωDi
= ωC + χ̃Qi

are the dispersively shifted cavity
frequencies for each band of the odd-parity subspace, we
apply the unitary of Eq. (A12) by simultaneously driving all
odd-parity spectral lines resonantly with a multitone drive (see
Appendix A for further details). Here multiplexing is used to
measure a binary observable, extracting less qubit information
than full multiplexed readout [29,30], at a reduced cost in
complexity.

For four qubits, odd-parity basis states produce dispersive
shifts of ±2χQ (blue and red odd-parity bands), while
even-parity basis states cause shifts of 0 or ±4χQ, as shown
in Fig. 1(c). Therefore, with two drive frequencies ωD1,2 =
ωC ± 2χQ we simultaneously drive both odd-parity spectral
lines. The cavity occupations for the four-qubit parity bands
are shown in Fig. 2 (see Appendix A for their analytic form).
Crucially, |αE|2 = 0 for all even-parity states at tD = π/χQ,
while |αO|2 are equal for all odd-parity states. Therefore, qubit

Red Odd

Blue Odd

Center Even

Red Even

Blue Even

FIG. 2. (Color online) Cavity photon number as a function of the
length of the drive pulse tD for the four-qubit parity bands. χQ/π =
10 MHz, so the optimal drive time is tD = 100 ns, which for |αO|2 = 9
sets a0 = 0.06 MHz.
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FIG. 3. (Color online) Bright-count probability for the four-qubit
odd-parity bands, dark-count probability for even parity, and mea-
surement contrast as functions of measurement time. The JPM
bright count rate, inelastic relaxation rate, and dark-count rate are
γJ = 200 MHz, γR = 200 MHz, and γD = 1 MHz. The cavity-JPM
coupling is gJ/2π = 50 MHz.

parity information has been mapped onto cavity occupation in
a way that erases all other qubit-state information.

In the measurement stage we distinguish between the
qubit-parity-dependent cavity states in a frequency- and phase-
insensitive way (to avoid intrasubspace decoherence) by using
a high-bandwidth photon counter. We tune the counter on
resonance with the bare cavity frequency ωC. For two qubits,
the counter and cavity are resonant for odd-parity qubit states,
maximizing the detection probability of |αO〉. For four qubits,
the counter is resonant with the cavity if the qubits are in
the center even-parity band; however, this is not an issue
because the cavity is unoccupied for even-parity qubits. The
counter will be ±2χQ off resonance from the cavity for
odd-parity qubits, symmetrically between the two odd-parity
cavity frequencies. For a counter with bandwidth >4χQ this
ensures the detection probabilities for all odd-parity states are
identical, minimizing intrasubspace decoherence.

For N = 4, the bright-count detection probability for the
two odd-parity bands is shown in Fig. 3, as is the false
“even-state detection probability” due to dark counts. As
expected, the two bright-count curves are identical. These
curves are calculated by solving the master equation with
relevant experimental parameters (for further information
see Appendix B). As an example of a threshold photon
counter we have chosen the JPM, which, coupled to a cavity,
approaches unit detection probability with large bandwidth
(�χQ) [31,32]. Recent progress has been made with a JPM
coupled to a cavity-qubit system with initial steps towards
single-qubit readout [33]. We note that similar detectors exist
in the optical [34,35] and near-infrared [36] regimes.

As a figure of merit we consider the parity measurement
contrast, defined as

C(tM) ≡ P (|αO|2,tM) − P (|αE|2,tM), (5)

the difference in detection probability between odd and even
parity states, which is a function of measurement time tM.
The drive time tD is chosen such that αE = 0, so the parity
measurement contrast reduces to the bright-count probability
minus the dark-count probability. In reality there will be

thermal photons in the cavity. However, because of the
threshold nature of the photon counter an initially empty
cavity is not necessary to maximize measurement contrast; it
is sufficient that the detection probability has a sharp threshold
between αO and αE. This is important for the JPM, where the
threshold can be set at zero occupation in principle [31,32],
however, this can be often difficult to engineer. Nonetheless, a
suitable threshold between αO and αE is easily obtained [5].

Parity measurement contrast is limited by misidentification
of the parity, which occurs either due to a dark count or the
nonzero probability of not detecting the state |αO〉. These
errors are controlled by the bright-to-dark-count ratio of the
photon counter and the cavity occupation |αO|2, and control
over these parameters is sufficient to obtain contrast arbitrarily
close to unity. As seen in Fig. 3, measurement contrast that
approaches 95% is achievable, compatible with the readout
threshold for error correction [7,37], in a 40-ns time frame with
experimentally relevant bright-to-dark-count ratio and |αO|2.

In the reset stage we implement the qubit-dependent cavity
displacement of Eq. (A12), but with β = −αM. For odd-parity
states, the cavity begins approximately in the coherent state
|αM〉 and is returned to vacuum, where |αM| is calculated
given the input magnitude |αO| and the form of the detection
back action on the cavity [38]. For a JPM, after measurement
the cavity is not a coherent state, and reset is imperfect.
However, single-shot parity measurement is unaffected by
reset error, and although repeated measurements are affected,
for experimentally relevant parameters reset error is on the
order of 1% [5].

III. ERROR ANALYSIS AND PROTOCOL COMPARISONS

In a realistic experiment it is unlikely that all qubit-cavity
dispersive shifts will be identical. Therefore, we examine the
robustness of our protocol against variations in the dispersive
shifts, defining the dispersive shift error ε, such that χQ1 = χQ

and χQ2 = χQ + ε for two qubits. For four qubits there are
three dispersive shift errors: ε2, ε3, and ε4. We assume this
error is small, such that εi/χQ � 1. For a superconducting
qubit with coherence time 5 μs, the uncertainty in χQ due to
homogeneous broadening is no more than ±0.1%, and thus,
|εi/χQ| < 0.2%. Mismatch in χQ causes a reduction in mea-
surement contrast and intrasubspace decoherence (dephasing
of a superposition of qubit states of the same parity). We
provide quantitative estimates of these effects, leaving further
details to Appendices C and D. Errors in the drive frequencies
ωDi cause errors similar to those for χQ mismatch but can be
corrected for during tune-up.

Imperfect resonance between the applied drives and the
cavity due to χQ mismatch leads to a reduced |αO|2 and
increased |αE|2. The reduction in measurement contrast due to
this is second order in εi/χQ, commensurate with a square-law
detector. As shown in Fig. 4, even for 10% χQ mismatch, the
resulting measurement error (even-state detection probability)
is on the order of 1%.

The intrasubspace decoherence caused by χQ mismatch is
due to qubit states with the same parity being entangled to
cavity states with different phases, which are distinguishable
in principle. The resulting decoherence is at most second
order in εi/χQ. Shown in Fig. 4 is the coherence of odd- and
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FIG. 4. (Color online) Even-parity detection probability, odd-
parity coherence, and even-parity coherence as functions of the χQ

mismatch for two-qubit parity measurement. ε/χQ ranges from 1% to
20%, well within experimental expectations. χQ/2π = 5 MHz, and
the drive power a0 is such that |αO|2 = 9.

even-parity two-qubit superposition states, quantified by the
relevant off-diagonal matrix element of the reduced two-qubit
density matrix. Although the decoherence of an odd-parity
superposition is nontrivial for larger values of ε/χQ, perfect
reset returns full coherence by depopulating the cavity in a
phase-insensitive way.

However, any cavity decay prior to perfect reset will
cause irreversible decoherence, as would the decay of residual
photons after imperfect reset. Up to the limit of strong χQ

mismatch (ε approaching χQ), the intrasubspace coherence
decays to exp{−NC[1 − cos(πε/χQ)]} in the steady state,
where NC is the average photon number in the cavity prior
to decay, hence requiring ε < χQ/

√
NC. For a high-Q cavity,

decay during the short measurement time is unlikely, and
postreset cavity decay is the significant source of loss. For
the parameters considered here, the residual photons after
imperfect reset result in coherence loss less than 1% in the
worst case, which is inconsequential.

For two qubits with χQ mismatch, no intrasubspace de-
coherence occurs during the measurement stage as cavity
states corresponding to qubit states of the same parity have
equal detection probability. For four qubits the detection
probabilities of cavity states within the same parity subspace
can be different, with their difference scaling as (ε2

i − ε2
j )/χ2

Q.
This changes the basis of measurement, changing the qubit
state at the protocol’s end. This effect can be mitigated by a
square-law photon counter that quickly saturates with photon
number once above threshold, such as the JPM, for which the
error in the output qubit state is negligible.

Higher-order effects beyond the dispersive Hamiltonian can
affect the parity readout protocol presented here. As a result of
the formation of cavity-qubit dressed states, there is residual
cavity occupation for even-parity states, which reduces parity
measurement contrast. For four qubits the contrast is reduced to
≈92% (see Appendix E). However, contrast can be improved
by increasing cavity-qubit detuning and/or using better drive
pulse sequences. The protocol’s QND character will also
be affected by higher-order terms; however, as shown for
single-qubit readout in [5], this effect is minimal. As the
measurement stages of single-qubit readout and parity readout
are very similar, this is also true for parity readout.

Our protocol involves an entangling operation that maps
qubit information to the cavity such that destructive readout
of the cavity nondestructively determines the qubits’ parity.
It provides a tailored and efficient quantum circuit that maps
parity information onto an ancilla (the cavity) and measures
the ancilla in a way that is insensitive to qubit-resolving
information. It occupies a middle ground between direct parity
measurement [14,18,19] and gate-based parity measurement.
The advantage of our protocol over gate-based protocols is
the reduced number of entangling gates required: one for
our proposal versus N for the gate-based N -qubit protocol.
This allows for readout fidelity that is not bounded by gate
fidelity. Our protocol also requires fewer cavities than direct
four-qubit parity readout [18,19] and avoids the intrasubspace
decoherence often introduced by these protocols.

IV. CONCLUSION

In conclusion we have presented a high-fidelity, scalable,
QND protocol for parity readout of two or four qubits via
photon counting of a dispersively coupled cavity. Measure-
ment contrast is limited by the bright-to-dark-count ratio of
the counter and, with the limited optimization in this work,
approaches 95%. Our protocol introduces no decoherence
of qubit states with the same parity and is robust against
major sources or error. Future work will focus on protocol
optimization and higher-order corrections.
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APPENDIX A: DERIVATION OF THE
QUBIT-PARITY-DEPENDENT
DRIVE FOR FOUR QUBITS

In this Appendix we derive the driven cavity evolution for
four qubits, as shown in Fig. 2 of the main text. The full system
Hamiltonian is block diagonal, with one block for each state
of the qubits. In each block the effective cavity Hamiltonian is

ĤC = ω̃Câ†â + a0
[

cos
(
ωD1 t + φ1

)
+ cos

(
ωD2 t + φ2

)]
�(tD − t)(â + â†), (A1)

where the shifted cavity frequency ω̃C = ωC + χ̃Q depends on
the qubit-state dependent dispersive shift χ̃Q = χQ〈σ̂z〉, which
defines the state of the qubits and therefore the corresponding
block of the full Hamiltonian. χ̃Q = ±2χQ for odd-parity
states, and χ̃Q = 0, ± 4χQ for even parity.

We go to a frame rotating with the shifted cavity frequency
ω̃C to obtain

Ĥ ′
C = a0

2
�(tD − t)[â(e−i	1t + e−i	2t ) + h.c.], (A2)
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where 	i = ω̃C − ωDi . We formally solve for the evolution
operator in each block for times t � tD as

Û (t,0) = T exp

{
−i

∫ tD

0
Ĥ ′

C(t ′)dt ′
}
, (A3)

where T is the time-ordering operator. The evolution operator
for the full system then has the form

ÛD =
∑

j

|j 〉〈j | ⊗ Ûj (t,0), (A4)

where Ûj (t,0) are the solutions to Eq. (A3) for each qubit state
|j 〉 in the computational basis.

We evaluate the integral in Eq. (A3) using the Magnus
expansion [39] to take care of the time ordering. Because
[â,â†] = 1, the Magnus expansion truncates at second order,
and conveniently, the second-order term is a global phase
that we can ignore. We evaluate the integral in two regimes,
corresponding to even or odd parity, and in so doing obtain
the solution for the blocks of the full Hamiltonian. For even
parity, 	1 �= 0 and 	2 �= 0, and to first order we have∫ tD

0
Ĥ ′

C(t ′)dt ′ =a0

2

{
â

[
i

	1
(e−i	1tD − 1)

+ i

	2
(e−i	2tD − 1)

]
+ h.c.

}
.

The evolution operator of Eq. (A3) for even parity is then

ÛE(t,0) = D̂(αE(tD)), (A5)

where

αE(tD) = − a0

2

[
ei	1tD − 1

	1
+ ei	2tD − 1

	2

]
. (A6)

In general αE(tD) varies in phase for different even-parity qubit
states as 	1,2 depend on the specific state.

For an odd-parity qubit basis state, the shifted cavity will be
on resonant with one of the two applied drives, and therefore,
one 	i is zero, while the other is nonzero. Since the solution
is symmetric in regards to which 	i = 0, we will examine
	1 = 0 and 	2 �= 0 without loss of generality. The integral in
Eq. (A3) now gives∫ tD

0
Ĥ ′

C(t ′)dt ′ = a0

2

[
â

(
tD + i

e−i	2tD − 1

	2

)
+ h.c.

]
,

which leads to the odd-parity evolution operator

ÛO(t,0) = D̂(αO(tD)) = D̂(β(tD) + η(tD)), (A7)

where

β(tD) = − ia0

2
tD, (A8)

η(tD) = − a0

2	2
(ei	2tD − 1). (A9)

In this case it is important to note that while η(tD) varies
between odd-parity states, β(tD) is the same for all odd-parity
states.

If ωD1 = 2χQ and ωD2 = −2χQ as in the main text, then for
even parity we have 	1,	2 ∈ {±2χQ, ± 6χQ}. For odd parity,
we have chosen 	1 = 0, which means that 	2 = 4χQ. Thus,

if we set tD = π/χQ, we have that αE(tD) = 0 and η(tD) = 0,
while β(tD) �= 0. As a result of this,

ÛE(t,0) = D̂(0) = I, (A10)

ÛO(t,0) = D̂(β(tD)), (A11)

and the evolution operators are the same for all states within
the same parity subspace. This, along with the block-diagonal
form of the full system Hamiltonian, implies that the unitary
on the full system will have the form

ÛD =
∑

j∈even

|j 〉〈j | ⊗ ÛE(t,0) +
∑
j∈odd

|j 〉〈j | ⊗ ÛO(t,0)

= P̂ E
Q ⊗ IC + P̂ O

Q ⊗ D̂(β), (A12)

where P̂
E,O
Q are projectors onto the even- and odd-parity

subspaces, respectively.

APPENDIX B: MASTER EQUATION FOR
THE CAVITY-JPM COUPLED SYSTEM

In this Appendix we describe the methodology of the
numerical simulations used to obtain Fig. 3 of the main text,
which shows the detection probability and parity contrast for
our example threshold detector, the JPM.

We start with the cavity-JPM coupled system for four-qubit
odd parity, where the shifted cavity frequencies ω̃C = ωC ±
2χQ and the JPM frequency ωJ = ωC are such that the JPM is
±2χQ detuned from the cavity. This leads to the Hamiltonian

ĤJC = ω̃Câ†â − ωJ

2
σ̂J + gJ(âσ̂+

J + â†σ̂−
J ),

where σ̂±
J couple the ground and excited states of the

JPM. As shown previously [22,31,32,40], the JPM is well
approximated as a three-level system with self-Hamiltonian
HJ = −ωJ

2 σJ, where σ̂J ≡ diag(1,−1,k). The energy of the
third “measurement” state is arbitrary in our model; the JPM
only tunnels into it incoherently at fixed rates [31,32].

In addition, the JPM experiences a number of incoherent
processes. Tunneling from the JPM excited state to the
measured state corresponds to photon detection and occurs
at the bright-count rate γJ, with the corresponding Lindblad
operator

L̂2 = √
γJ(IC ⊗ |m〉〈1|J). (B1)

Inelastic relaxation takes the JPM from the excited state to the
ground state at a rate γR, with corresponding Lindblad operator

L̂1 = √
γR(IC ⊗ |0〉〈1|J). (B2)

Finally, false detections, where the JPM tunnels from the
ground state to the measured state, can occur at the dark-count
rate γD, with Lindblad operator

L̂0 = √
γD(IC ⊗ |m〉〈0|J). (B3)

We ignore the effects of pure dephasing on the JPM as they do
not affect the parity measurement protocol of the main text.
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We solve the master equation

ρ̇(t) = − i[ĤJC,ρ(t)]

+
2∑

μ=0

(
L̂μρ(t)L̂†

μ − 1

2
{L̂†

μL̂μ,ρ(t)}
)

, (B4)

with γJ = 200 MHz, γR = 200 MHz, γD = 1 MHz, and
gJ/2π = 50 MHz for both ω̃C − ωC = 2χQ and −2χQ (where
χQ/2π = 5 MHz) to generate the detection probability curves
of Fig. 3.

APPENDIX C: QUBIT DISPERSIVE SHIFT MISMATCH

In this Appendix we examine in detail the possible sources
of error caused by χQ mismatch that were described in the
main text and shown in Fig. 4. First, we quantify the decrease in
measurement contrast and the coherence loss for two qubits. As
described in the main text, this coherence loss can be restored
by perfect reset. We then examine these effects for four qubits
and also quantify the change in the measurement basis due to
detection probability mismatch, which is unique to four qubits.

1. Two qubits

If the dispersive shifts for the two qubits vary, such that
χQ1 = χQ and χQ2 = χQ + ε, then the cavity-drive detunings
within a parity subspace split, such that we now have

	00 = −2χQ − ε,

	11 = 2χQ + ε,

	01 = ε,

	10 = −ε, (C1)

where 	ij is the cavity-drive detuning for the state |ij 〉.
After a time tD = π/χQ the cavity will be in a qubit-state-

dependent coherent state with amplitude

α00 = a0

2(2χQ + ε)

(
e
−i π

χQ
ε − 1

)
,

α11 = − a0

2(2χQ + ε)

(
e
i π

χQ
ε − 1

)
,

α01 = − a0

2ε

(
e
i π

χQ
ε − 1

)
,

α10 = a0

2ε

(
e
−i π

χQ
ε − 1

)
. (C2)

For the even-parity qubit states we have α11 = −ᾱ00, and for
the odd-parity states α10 = −ᾱ01. As a result, states within the
same parity subspace will have the same detection probability,
so there will be no intrasubspace decoherence during the
measurement stage. However, as |α00| �= 0, there will be
a reduction of measurement contrast due to the increased
probability of misidentification. As the coherent states for each
parity subspace are out of phase with one another, there also
will be intrasubspace decoherence during the drive stage. We
will now quantify these effects in the ε/χQ < 1 regime.

For the measurement contrast and misidentification we can
quantify the effect of χQ mismatch by looking at the cavity
occupation for odd parity, |αO|2 = |α01|2 = |α10|2, and for

even parity, |αE|2 = |α00|2 = |α11|2. For odd parity

|αO|2 =
(

a0

2ε

)2[
2 − 2 cos

(
πε

χQ

)]

=
(

a0

2

)2(
π

χQ

)2[
1 − 1

12

(
πε

χQ

)2]
+ O(ε4), (C3)

where ε = ε/χQ, and we see that the reduction of |αO|2 from
that when the dispersive shifts are perfectly matched is second
order in ε/χQ. Similarly, for even parity

|αE|2 =
(

a0

2(2χQ + ε)

)2[
2 − 2 cos

(
πε

χQ

)]

=
(

a0

2(2χQ + ε)

)2(
πε

χQ

)2

+ O(ε4)

=
(

a0

2

)2(
π

χQ

)2(
ε

2χQ

)2

+ O(ε4), (C4)

and the increase in |αE|2 from that when the dispersive shifts
are perfectly matched is again second order in ε/χQ. The fact
that the lowest-order dependence is quadratic originates from
the expansion of the cosine and can be physically explained
by the fact that the amplitude is originally tuned to zero, and a
square-law detector responds to intensity which is |α|2.

To quantify the intrasubspace decoherence during the drive
stage, we consider an arbitrary superposition of odd-parity
states with the cavity initially in vacuum, to which we apply
the modified qubit-state-dependent drive (accounting for χQ

mismatch). The resulting state

|�〉 = a|01〉|α01〉 + b|10〉|α10〉, (C5)

where |a|2 + |b|2 = 1, is no longer a product state, and as such
there will necessarily be decoherence of the reduced qubit
state. The reduced qubit state is

ρQ =

⎛
⎜⎜⎜⎝

0 0 0 0

0 |a|2 D̄ab̄ 0

0 Dāb |b|2 0

0 0 0 0

⎞
⎟⎟⎟⎠, (C6)

with the complex decoherence factor

D = 〈α01|α10〉 = exp
{−(|α01|2 + ᾱ2

01

)}
. (C7)

From Eq. (C2) we see that

|α01|2 = 2A2
O

[
1 − cos

(
πε

χQ

)]
, (C8)

ᾱ2
01 = A2

O

{
1 − 2

[
cos

(
πε

χQ

)
− i sin

(
πε

χQ

)]

+ cos

(
2
πε

χQ

)
− i sin

(
2
πε

χQ

)}
, (C9)

where AO = a0/2ε.
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Keeping only the first nonzero term in the Taylor series
expansion, we find

|α01|2 + ᾱ2
01 = A2

O

[
1

2

(
πε

χQ

)4

+ i

(
πε

χQ

)3]

=
(

a0

2

)2(
π

χQ

)2[1

2

(
πε

χQ

)2

+ i
πε

χQ

]
+ O(ε3).

(C10)

As can be seen, for an odd-parity superposition, χQ mismatch
causes decoherence at a rate that is second order in the small
parameter ε/χ and also introduces a complex phase factor that
is first order in ε/χ.

For an even-parity superposition, we simply replace AO

with the corresponding expression for even states, and we find

|α00|2 + ᾱ2
00 =

(
a0

2(2χQ + ε)

)2[1

2

(
πε

χQ

)4

+ i

(
πε

χQ

)3]

=
(

a0

4χQ

)2[1

2

(
πε

χQ

)4

+ i

(
πε

χQ

)3]
+ O(ε5).

(C11)

Thus, the even-parity situation is even better, as the decoher-
ence rate is now fourth order in ε/χ and the complex phase
factor is now third order.

For both odd- and even-parity superpositions full intrsub-
space coherence will be returned to the two qubits by perfect
reset, as it disentangles the qubits and the cavity in a unitary
and phase-insensitive way. However, if cavity decay occurs
before reset or imperfect reset leaves residual photons which
subsequently decay, the qubit state will lose coherence, as will
be discussed in Appendix D.

2. Four qubits

The situation is considerably more complex in the four-
qubit case as the cavity-drive detunings split into 16 distinct
frequencies, one for each qubit state. Correspondingly, after
the qubit-state-dependent drive there are 16 possible cavity
states |αijkl〉, where i,j,k,l ∈ {0,1} index the qubit state |ijkl〉.
As a result of the double-frequency drive each αijkl will
have two components oscillating at different frequencies, with
each component similar in form to those of Eq. (C2). Cavity
states for even qubit parity will have both components of the
form of α00, where the amplitude is suppressed by a factor
1/(2χQ + ε), as both drives are off resonance by at least 2χQ.
For odd qubit parity the cavity state will have one component
that is similar in form to α00 from the off-resonance drive and
one component similar to α01 from the nearly on resonance
drive.

Given the similar structure of αijkl in the four-qubit case to
αij of the two-qubit case, it is clear that the errors introduced
by χQ mismatch in the four-qubit case will be a generalization
of those in the two-qubit case. There will be a reduction of
measurement contrast due to an increase in the probability
of misidentification, which will again be at most second
order in the small parameters εi/χQ. The overlap between
any two states |αijkl〉 corresponding to qubits in the same
parity subspace is very similar to Eqs. (C10) and (C11) for the

two-qubit case, and as a result, the intrasubspace decoherence
during the drive phase will be at most second order in εi/χQ

for odd-parity superpositions and fourth order for even parity.
As in the two-qubit case full coherence will be returned to the
qubits by perfect cavity reset.

Despite the χQ mismatch the two-qubit case exhibits sym-
metry in αij within a parity subspace that ensures the detection
probabilities are the same for cavity states corresponding to
qubit states of the same parity. However, in the four-qubit case
this symmetry is no longer present, as in general ε2 �= ε3 �= ε4,
and as a result, detection probabilities will differ within a parity
subspace.

For example, consider an equal superposition of odd-parity
states |a〉 and |b〉, which after the drive stage are entangled
to cavity stages |αa,b〉, respectively. Detection by the photon
counter results in back action on the cavity described by the
nonunitary back-action operator B̂. Defining the normalized
states

|ψa,b〉 = B̂|αa,b〉
〈αa,b|B̂†B̂|αa,b〉

= B̂|αa,b〉
Pa,b

, (C12)

where Pa,b is the detection probability of the state |αa,b〉, the
resulting state of the cavity-qubit system after detection by the
photon counter is

|�〉 = 1√
N

(
√

Pa|a〉|ψa〉 +
√

Pb|b〉|ψb〉), (C13)

where the normalization factor N = Pa + Pb.
The four-qubit states of Eq. (C13) are entangled to

distinguishable cavity states such that the reduced four-qubit
density matrix’s coherence is reduced by the overlap 〈ψb|ψa〉.
To remove this effect and focus solely on detection probability
mismatch we assume that we can perform perfect reset of the
cavity and create the state

|�〉 = 1√
N

(
√

Pa|a〉 +
√

Pb|b〉)|0〉, (C14)

for which the reduced qubit state is the pure state |�〉Q =
(
√

Pa|a〉 + √
Pb|b〉)/√N . Clearly, the output state |�〉Q is no

longer the input state, and this change is a result of the fact
that different detection probabilities for states within the same
parity subspace change the basis of measurement of the
protocol. To quantify this effect we calculate the magnitude of
the overlap between the target state |�T〉Q = (|a〉 + |b〉)/√2
and the state |�〉Q, given by

O = |〈�T |�〉Q|2 = 1

2

(
1 + 2

√
Pa

√
Pb

Pa + Pb

)
, (C15)

which is unity for Pa = Pb, as expected.
If we assume the photon counter is a JPM with a subtraction

operator back action [38], then the detection probability of the
state |αi〉 is

Pi = 1 − exp{−|αi |2}. (C16)

By Taylor expanding the overlap and discarding terms
smaller than exp (−2|αa/b|2) we obtain the approximate
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overlap

O = 1 − e−(|αa |2+|αb|2)[cosh(|αa|2 − |αb|2) − 1]

4
(
2 − e−|αa |2 − e−|αb |2

)
+O

(
e−3|αa/b |2). (C17)

Since we are interested in the effect of detection probability
mismatch, we can assume αa,b differ only in magnitude and
set |αa| = |α| and |αb| = |α|(1 + δ) without loss of generality.
The overlap can then be rewritten as

O = 1 − e−|α|2(2+2δ+δ2){cosh[|α|2(2δ + δ2)] − 1}
4
(
2 − e−|α|2 − e−|α|2(1+δ)2

) . (C18)

To examine the scaling of the overlap, we assume that δ � 1
and keep only terms up to order δ2 in the Taylor series, which
gives

O = 1 − δ2|α|4e−2|α|2

4
(
1 − e−|α|2) + O(δ3). (C19)

Four-qubit χQ mismatch causes a difference in the cavity
coherent-state amplitude for states in the same parity subspace
that scales as δ2 ∝ (ε2

i − ε2
j )/χ2

Q. As we assume εi/χQ is a
small parameter, then (ε2

i − ε2
j )/χ2

Q is as small or smaller, so
the assumption that δ � 1 is valid.

From Eq. (C19) we see that the error in the output
state scales as (ε2

i − ε2
j )/χ2

Q and is damped by the factor

|α|4e−2|α|2/4. For |α| = 3 as used in the main text this damping
factor is on the order of 10−6, so any error in the output state
caused by detection probability mismatch is negligible.

A better approximation of the detection probability in the
case where the JPM can also relax inelastically is [5]

Pi ≈ 1 − exp

{
−|αi |2 γJ

γJ + γR

}
. (C20)

Using γJ = γR as elsewhere, then the error of Eq. (C19) is
damped by a factor ∝|α|4e−|α|2 . For |α| = 3 as before, this is
on the order of 10−2, which again results in a negligible effect
that will only decrease with increasing cavity photon number.

APPENDIX D: QUBIT DECOHERENCE
AND CAVITY DECAY

When χQ mismatch is present, there can be a phase
difference between cavity states corresponding to qubit states
with the same parity, as discussed for two qubits in Sec. C 1. In
this Appendix we examine the effect this has on intrasubspace
coherence when a cavity decay mechanism is introduced, as
described in the main text.

We start with a typical postdrive or imperfect reset state of
the form

ρ̂(0) =
∑
s,s ′

c(s,s ′)|s〉〈s ′| ⊗ ρ̂s,s ′ (0) ⊗ ρ̂B, (D1)

where s,s ′ label the state of the qubits, ρ̂s,s ′ (0) are the
qubit-dependent cavity matrices, and the environmental bath is
represented by the state ρ̂B, which is assumed to be stationary
and a thermal state. Additionally, we assume that the qubit
states have no intrinsic time dependence; that is, we work in
the rotating frame of the qubits.

We consider the initial state of the qubits to be an equal
superposition of two states in the same parity subspace, which
for simplicity we have labeled as |0〉 and |1〉. This results in
the initial system state

ρ̂S(0) = 1
2 (|0〉〈0| ⊗ |α0〉〈α0| + |0〉〈1| ⊗ |α0〉〈α1|
+ |1〉〈0| ⊗ |α1〉〈α0| + |1〉〈1| ⊗ |α1〉〈α1|), (D2)

where ρ̂s,s ′ (0) = |αs〉〈αs ′ |. Due to χQ mismatch α0 and α1

differ in only their phase, and we can set

α0 = |α̃|eiϕ0 , α1 = |α̃|eiϕ1 . (D3)

Assuming that the cavity is in a coherent state is accurate for
a post-drive-stage state, but the postreset state will be a more
general state of the form ρ̂s,s ′ (0) = |ψs〉〈ψs ′ |. Nevertheless,
we are eventually interested in steady-state dynamics, which
are independent of the initial state of the cavity (under the
Born-Markov approximation). We will treat the post-drive-
stage situation first and then generalize to the postreset state.

To solve for ρ̂s,s ′ (t), we will use the Wigner characteristic
function approach. We define the Wigner characteristic func-
tion χss ′ (α,t) of the state ρ̂s,s ′ (t) as

ρ̂s,s ′ (t) = 1

π

∫
d2αχss ′ (α,t)D̂(−α), (D4)

where D̂(β) is the displacement operator.
If we assume a Jaynes-Cumming-type interaction between

the cavity and a bosonic environment with smooth spectral
density, then following [41], we arrive at the analytic solution
for χss ′ (α,t),

χss ′ (α,t) = χss ′ (αe−t(κ−iω),0)e[ η

2 |α|2(e−2tκ−1)], (D5)

where κ is the decay rate of the cavity, ω is the frequency of
the cavity mode, and η = 1 + 2n(ω), with n(ω) being the Bose
distribution at frequency ω.

In order to quantify the absolute maximum amount of
decoherence, we are interested in the steady-state solution
(t → ∞) of Eq. (D5),

χ̃ss ′ (α) = χss ′ (0,0)e− η

2 |α|2 . (D6)

Using the facts that

χss ′ (0,0) = 1

4π
Tr[ρ̂s,s ′ (0)], (D7)

χ10(α,t) = χ̄01(−α,t), (D8)

we obtain

χ̃00(α) = χ̃11(α) = 1

4π
e− η

2 |α|2 , (D9)

χ̃01(α) = exp[|α̃|2(ei(ϕ1−ϕ0) − 1)]
1

4π
e− η

2 |α|2 , (D10)

χ̃10(α) = exp[|α̃|2(ei(ϕ0−ϕ1) − 1)]
1

4π
e− η

2 |α|2 . (D11)

Each of Eqs. (D9), (D10), and (D11) can be reduced
to χ̃ss ′ (α) = Fss ′ (α0,α1)χThermal(α,ω), where χThermal(α,ω) =
e− η

2 |α|2/4π is the Wigner characteristic function for a thermal
state at frequency ω.
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In light of this simplification the steady-state solution for
the full system reduces to

ρ̂S =
∑
s,s ′

c(s,s ′)Fss ′ (α0,α1)|s〉〈s|

⊗ 1

π

∫
d2αχThermal(α,ω)D̂(−α), (D12)

where Fss ′ (αs,αs ′ ) = exp[|α̃|2(ei(ϕs−ϕs′ ) − 1)]. As this is a
product state, it is trivial to trace out the state of the cavity
and obtain the state of the qubits alone,

ρ̂Q = 1
2 (|0〉〈0| + F01(α0,α1)|0〉〈1|
+F10(α1,α0)|1〉〈0| + |1〉〈1|). (D13)

For two qubits, we examine the damping envelope of the
off-diagonal elements, given by

F01(α0,α1) = exp [−|α̃|2(e2iϕ0 + 1)], (D14)

where we have used the fact that ϕ0 − ϕ1 = 2ϕ0 − π for two
qubits, as can be calculated from either pair of expressions
in Eq. (C2). We are interested in the absolute value of this
envelope, which is given by

|F01(α0,α1)| = exp (−|α̃|2Re{(e2iϕ0 + 1)})

= exp

{
−|α̃|2

[
1 − cos

(
π

χQ
ε

)]}
, (D15)

where the second equality comes from using Eq. (C2) to
define e2iϕ0 . From this we see that the decoherence depends
on both the cavity occupation and the magnitude of the χQ

mismatch, being maximal when ε/χQ = 1. Using |α|2 = 9 as
used elsewhere and a strong mismatch of ε/χQ = 0.1, the qubit
coherence is reduced to 64% in the steady state. However, for
a high-Q cavity we do not expect any photon loss during the
parity readout protocol, and as such, the postreset state is of
greater interest.

Generalizing to the postreset state, we need only change
the definition of the damping envelope to

Fss ′ = Tr[ρ̂s,s ′ (0)] = 〈ψs ′ |ψs〉, (D16)

where |ψs〉 is the state after detection and imperfect reset for
an initial cavity state |αs〉. We will consider the worst-case
scenario for the states |α0/1〉, where the damping envelope of
Eq. (D15) reduces to exp(−2|α̃|2). This occurs for ε = χQ,
where the states |α0/1〉 lie on the real axis with α0 = −α1. This
is the worst case as the states are maximally distinguishable,
and correspondingly, we expect the states |ψ0/1〉 to also be
maximally distinguishable in this case.

Figure 5 shows a numerical simulation of 1 − F01 for the
worst-case postreset state as a function of both the initial
cavity occupation |α̃|2 and the number of photons removed
by the photon detector. For these simulations, the detector was
assumed to be a JPM with subtraction operator back action
[38]. Multiple photons can be removed due to JPM inelastic
relaxation. As can be seen, even for the worst-case scenario,
qubit coherence is reduced by less than 1%. As we expect
ε � χQ in a realistic experiment, the decoherence caused by
postreset-state photon loss will be far from the upper bound
presented here and can be considered inconsequential.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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3
2
1

FIG. 5. (Color online) 1 − F01 as a function of the cavity occu-
pation prior to detection and imperfect reset (horizontal axis) and
the number of photons removed from the cavity by the photon
detector (color and line style). The initial cavity states considered are
maximally distinguishable, so this represents the worst-case scenario.

APPENDIX E: HIGHER-ORDER EFFECTS BEYOND
THE DISPERSIVE HAMILTONIAN

While the dispersive Hamiltonian is the first-order approx-
imation to the cavity-qubit coupling in the relevant regime
of our protocol, it is worthwhile to consider the effects on
the protocol of the full Jaynes-Cummings Hamiltonian for the

FIG. 6. (Color online) (a) Cavity occupation for even-parity
qubit states with Jaynes-Cummings cavity-qubit coupling. (b) Bright-
and dark-count rates and measurement contrast for the cavity photon
numbers of (a), assuming the even state is from the right band (worst
case).
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cavity-qubit coupling, given by

ĤJC = ωCâ†â −
N∑

k=0

1

2
ωQσ̂ k

z +
N∑

k=0

gk(σ̂ k
+â + σ̂ k

−â†), (E1)

where gk is the cavity-qubit coupling for qubit k. The major
effects of the full Jaynes-Cummings Hamiltonian occur during
the drive stage.

The first is an asymmetric shift to the cavity frequency
within a parity subspace due to the Kerr-like interaction term,
which is one order of approximation higher than the dispersive
Hamiltonian. The result of this is that the minima of the even-
qubit-parity cavity occupation curves no longer coincide, as
can be seen in Fig. 6(a) for the four-qubit case. The second
major effect is the formation of dressed cavity-qubit states,
the result of which is that there is residual cavity occupation
for even-parity states, and the minima are no longer zero for
all even-parity states. Therefore, for no choice of tD will the
cavity be in the vacuum state if the qubits are in an even-parity
state. This reduces the measurement contrast, although as can

be seen in Fig. 6(b), this reduction is only on the order of a
few percent, and measurement contrasts approaching 92% can
still be achieved with the same parameters as in the main text.

These effects can be mitigated by increasing the cavity-
qubit detuning, in which case the parity measurement contrast
asymptotes to the dispersive value. However, this either de-
creases χQ and therefore increases the length of the drive stage
or necessitates also increasing the cavity-qubit couplings (to
keep χQ constant), which is advisable only to the point where
the rotating-wave approximation begins to break down. It is
also possible to improve the contrast by better pulse shaping
in the drive stage, and this will be the focus of future work. As
can also be seen in Fig. 6(a), the fact that the even-qubit-parity
cavity photon states are not the same between parity bands
would cause intrasubspace qubit decoherence. Full coherence
would be returned by perfect reset, unless photon loss occurs
(either through a detection or other mechanism). However,
photon loss of any kind is so unlikely for these low-occupation
cavity states that the effect on qubit coherence is minimal, on
the order of a few percent at most.
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