McDermott Lab
Home Research Publications People

Publications

  • Measurement of a Superconducting Qubit with a Microwave Photon Counter,
    A. Opremcak, I. V. Pechenezhskiy, C. Howington, B. G. Christensen, M. A. Beck, E. Leonard Jr., J. Suttle, C. Wilen, K. Nesterov, G. J. Ribeill, T. Thorbeck,1, F. Schlenker, M. G. Vavilov, B. L. T. Plourde, and R. McDermott, Submitted to Journal, (2018).
  • PDF arXiv
  • Quantum–Classical Interface Based on Single Flux Quantum Digital Logic,
    R. McDermott, M. G. Vavilov, B. L. T. Plourde, F. K. Wilhelm, P. J. Liebermann, O. A. Mukhanov, and T. A. Ohki, Quantum Sci. Technol. 3, 024004 (2018).
  • PDF IOP arXiv
  • Reverse Isolation and Backaction of the SLUG Microwave Amplifier,
    T. Thorbeck, S. Zhu, E. Leonard Jr., R. Barends, J. Kelly, John M. Martinis, R. McDermott, Phys. Rev. Applied 8, 054007 (2017).
  • PDF PRA arXiv
  • Phonon-Mediated Quasiparticle Poisoning of Superconducting Microwave Resonators,
    U. Patel, I. V. Pechenezhskiy, B. L. T. Plourde, M. G. Vavilov, and R. McDermott, Phys. Rev. B 8, 054007 (2016).
  • PDF PRB arXiv
  • Optimizing Single Microwave-photon Detection: Input-Output Theory,
    M. Schaondorf, L. C. G. Govia, M. G. Vavilov, R. McDermott, and F. K. Wilhelm, (2016).
  • PDF arXiv
  • Origin and Reduction of 1/f Magnetic Flux Noise in Superconducting Devices,
    P. Kumar, S. Sendelbach, M. A. Beck, J. W. Freeland, Z. Wang, H. Wang, C. C. Yu, R. Q. Wu, D. P. Pappas, and R. McDermott, Phys. Rev. Applied 6, 041001 (2016).
  • PDF PRA arXiv
  • Optimized Coplanar Waveguide Resonators for a Superconductor-Atom Interface,
    M. A. Beck, J. A. Isaacs, D. Booth, J. D. Pritchard, M. Saffman, and R. McDermott, Appl. Phys. Lett. 109, 092602 (2016).
  • PDF AIP arXiv
  • Scalable Two- and Four-qubit Parity Measurement with a Threshold Photon Counter,
    L. C. G. Govia, E. J. Pritchett, B. L. T. Plourde, M. G. Vavilov, R. McDermott, and F. K. Wilhelm, Phys. Rev. A 92, 022335 (2015).
  • PDF PRA arXiv
  • High-fidelity Qubit Measurement with a Microwave Photon Counter,
    L. C. G. Govia, E. J. Pritchett, C. Xu, B. L. T. Plourde, M. G. Vavilov, F. K. Wilhelm, and R. McDermott, Phys. Rev. A 90, 062307 (2014).
  • PDF PRA arXiv
  • High Fidelity Readout of a Transmon Qubit Using a Superconducting Low-inductance Undulatory Galvanometer Microwave Amplifier,
    Y. Liu, S. J. Srinivasan, D. Hover, S. Zhu, R. McDermott and A. A. Houck, New J. Phys. 16, 113008 (2014).
  • PDF NJP arXiv
  • Accurate Qubit Control with Single Flux Quantum Pulses,
    R. McDermott and M. G. Vavilov, Phys. Rev. Applied 2, 014007 (2014).
  • PDF PRA arXiv
  • High Fidelity Qubit Readout with the Superconducting Low-Inductance Undulatory Galvanometer Microwave Amplifier,
    D. Hover, S. Zhu, T. Thorbeck, G. J. Ribeill, D. Sank, J. Kelly, R. Barends, J. M. Martinis, and R. McDermott, Appl. Phys. Lett. 104, 152601 (2014).
  • PDF APL arXiv
  • Hybrid Atom-Photon Quantum Gate in a Superconducting Microwave Resonator,
    J. D. Pritchard, J. A. Isaacs, M. A. Beck, R. McDermott, and M. Saffman, Phys. Rev. A 89, 010301(R) (2014).
  • PDF PRA arXiv
  • Epitaxial Al2O3 Capacitors for Low Microwave Loss Superconducting Quantum Circuits,
    K.-H. Cho, U. Patel, J. Podkaminer, Y. Gao, C. M. Folkman, C. W. Bark, S. Lee, Y. Zhang, X. Q. Pan, R. McDermott, and C. B. Eom, APL Mater. 1, 042115 (2013).
  • PDF APL M
  • Coherent Josephson Phase Qubit with a Single Crystal Silicon Capacitor,
    U. Patel, Y. Gao, D. Hover, G. J. Ribeill, S. Sendelbach, and R. McDermott, Appl. Phys. Lett. 102, 012602 (2013).
  • PDF APL arXiv
  • Quantum Efficiency of a Microwave Photon Detector based on a Current-biased Josephson Junction,
    A. Poudel, R. McDermott, and M. G. Vavilov, Phys. Rev. B 86, 174506(2012).
  • PDF PRB arXiv
  • Superconducting Low-inductance Undulatory Galvanometer Microwave Amplifier,
    D. Hover, Y.-F. Chen, G. J. Ribeill, S. Zhu, and R. McDermott, Appl. Phys. Lett. 100, 063503 (2012).
  • PDF APL arXiv
  • Superconducting Low-inductance Undulatory Galvanometer Microwave Amplifier: Theory,
    G. J. Ribeill, D. Hover, Y.-F. Chen, S. Zhu, and R. McDermott, J. Appl. Phys. 110, 103901 (2011).
  • PDF JAP arXiv
  • Microwave Photon Counter Based on Josephson Junctions,
    Y.-F. Chen, D. Hover, S. Sendelbach, L. Maurer, S. T. Merkel, E. J. Pritchett, F. K. Wilhelm, and R. McDermott, Phys. Rev. Lett. 107, 217401 (2011).
  • PDF PRL arXiv
  • Complex Inductance, Excess Noise, and Surface Magnetism in dc SQUIDs,
    S. Sendelbach, D. Hover, M. Mueck, and R. McDermott, Phys. Rev. Lett. 103, 117001 (2009).
  • PDF PRL
  • Microstrip Superconducting Quantum Interference Device Radio-frequency Amplifier: Effects of Negative Feedback on Input Impedance,
    M. Mueck, D. Hover, S. Sendelbach, and R. McDermott, Appl. Phys. Lett. 94, 132509 (2009).
  • PDF APL
  • Microwave Response of Vortices in Superconducting Thin Films of Re and Al,
    C. Song, T. W. Heitmann, M. P. DeFeo, K. Yu, R. McDermott, M. Neeley, J. M. Martinis, and B. L. T. Plourde, Phys. Rev. B 79, 174512 (2009).
  • PDF PRB
  • Materials Origins of Decoherence in Superconducting Qubits,
    R. McDermott, IEEE Trans. Appl. Supercond. 19, 2 (2009).
  • PDF IEEE
  • Magnetism in SQUIDs at Millikelvin Temperatures,
    S. Sendelbach, D. Hover, A. Kittel, M. Mueck, J.M. Martinis, and R. McDermott, Phys. Rev. Lett. 100, 227006 (2008).
  • PDF PRL arXiv
  • 1/f Flux Noise in Josephson Phase Qubits,
    R.C. Bialczak, R. McDermott, M. Ansmann, M. Hofheinz, N. Katz, E. Lucero, M. Neeley, A.D. O'Connell, H. Wang, A.N. Cleland, and J.M. Martinis, Phys. Rev. Lett. 99, 187006 (2007).
  • PDF PRL arXiv
  • Calculated Signal-to-noise Ratio of MRI Detected with SQUIDs and Faraday Detectors in Fields from 10 μT to 1.5 T,
    W. Myers, D. Slichter, M. Hatridge, S. Busch, M. Mößle, R. McDermott, A. Trabesinger, and J. Clarke, J. Magn. Reson. 186, 182 (2007).
  • PDF JMR
  • Measurement of the Entanglement of Two Superconducting Qubits via State Tomography,
    Matthias Steffen, M. Ansmann, Radoslaw C. Bialczak, N. Katz, Erik Lucero, R. McDermott, Matthew Neeley, E. M. Weig, A. N. Cleland, and John M. Martinis, Science 313, 1423 (2006).
  • PDF Science
  • Coherent State Evolution in a Superconducting Qubit from Partial-collapse Measurement,
    N. Katz, M. Ansmann, Radoslaw C. Bialczak, Erik Lucero, R. McDermott, Matthew Neeley, Matthias Steffen, E. M. Weig, A. N. Cleland, John M. Martinis, and A. N. Korotkov, Science 312, 1498 (2006).
  • PDF Science
  • State Tomography of Capacitively Shunted Phase Qubits with High Fidelity,
    Matthias Steffen, M. Ansmann, R. McDermott, N. Katz, Radoslaw C. Bialczak, Erik Lucero, Matthew Neeley, E.M. Weig, A.N. Cleland, and John M. Martinis, Phys. Rev. Lett. 97, 050502 (2006).
  • PDF PRL
  • Decoherence in Josephson Qubits from Dielectric Loss,
    J.M. Martinis, K.B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K.D. Osborn, K. Cicak, S. Oh, D.P. Pappas, R.W. Simmonds, C.C. Yu, Phys. Rev. Lett. 95, 210503 (2005).
  • PDF PRL
  • Simultaneous State Measurement of Coupled Josephson Phase Qubits,
    R. McDermott, R.W. Simmonds, M. Steffen, K.B. Cooper, K. Cicak, K.D. Osborn, S. Oh, D.P. Pappas, and J.M. Martinis, Science 307, 1299 (2005).
  • PDF Science
  • Low-Leakage Superconducting Tunnel Junctions with a Single-Crystal Al2O3 Barrier,
    S. Oh, K. Cicak, R. McDermott, K.B. Cooper, K.D. Osborn, R.W. Simmonds, M. Steffen, J.M. Martinis, and D.P. Pappas, Supercond. Sci. Technol. 18, 1396 (2005).
  • SQUID detected NMR and MRI at Ultralow Fields,
    J. Clarke, R. McDermott, A. Pines, and A.H. Trabesinger, U.S. Patent No. 6,885,192 (2005).
  • Observation of Quantum Oscillations between a Josephson Phase Qubit and a Microscopic Resonator Using Fast Readout,
    K.B. Cooper, M. Steffen, R. McDermott, R.W. Simmonds, Seongshik Oh, D.A. Hite, D.P. Pappas, and J.M. Martinis, Phys. Rev. Lett. 93, 180401 (2004).
  • Conducting Atomic Force Microscopy for Nanoscale Tunnel Barrier Characterization,
    K.M. Lang, D.A. Hite, R.W. Simmonds, R. McDermott, D. P. Pappas, and J. M. Martinis, Rev. Sci. Instrum. 75, 2726 (2004).
  • Microtesla MRI with a Superconducting QUantum Interference Device,
    R. McDermott, S-K. Lee, B. ten Haken, A.H. Trabesinger, A. Pines, and J. Clarke, Proc. Natl. Acad. Sci. 101, 7857 (2004).
  • PDF PNAS
  • SQUID-Detected Magnetic Resonance Imaging in Microtesla Magnetic Fields,
    R. McDermott, N. Kelso, S-K. Lee, M. Mössle, M. Mück, W. Myers, B. ten Haken, H.C. Seton, A.H. Trabesinger, A. Pines, and J. Clarke, J. Low Temp. Phys. 135, 793 (2004).
  • SQUID-detected Liquid State NMR in Microtesla Fields,
    A.H. Trabesinger, R. McDermott, S-K. Lee, M. Mück, J. Clarke, and A. Pines J. Phys. Chem. A 108 957 (2004).
  • Liquid-State NMR and Scalar Couplings in Microtesla Magnetic Fields,
    R. McDermott, A.H. Trabesinger, M. Mück, E.L. Hahn, A. Pines, and J. Clarke, Science 295 2247 (2002).
  • PDF Science
  • Laser-polarized Xe-129 NMR and MRI at Ultralow Magnetic Fields,
    A. Wong-Foy, S. Saxena, A.J. Moule, H.M.L. Bitter, J.A. Seeley, R. McDermott, J. Clarke, and A. Pines, J. Mag. Reson. 157 235 (2002).
  • Resolution of 129Xe Chemical Shifts at Ultralow Magnetic Field,
    S. Saxena, A. Wong-Foy, A.J. Moule, J.A. Seeley, R. McDermott, J. Clarke and A. Pines, J. Am. Chem. Soc. 123, 8133 (2001).
  • Ultrasensitive Magnetic Biosensor for Homogeneous Immunoassay,
    Y.R. Chemla, H.L. Grossman, Y. Poon, R. McDermott, R. Stevens, M.D. Alper, and John Clarke, Proc. Natl. Acad. Sci. 97, 14268 (2000).
  • Scanning SQUID Microscope Differentiation of Ferromagnetic Steel Phases,
    T.J. Shaw, J.W. Chan, S.-H. Kang, R. McDermott, J.W. Morris, Jr., and J. Clarke, Acta Materialia 48, 2655 (2000).
  • Low-Field Magnetic Resonance Imaging with a High-Tc dc Superconducting Quantum Interference Device,
    K. Schlenga, R. McDermott, J. Clarke, R.E. de Souza, A. Wong-Foy and A. Pines, Appl. Phys. Lett. 75, 3695 (1999).
  • NMR and MRI Obtained with High Transition Temperature dc SQUIDs,
    R.E. de Souza, K. Schlenga, A. Wong-Foy, R. McDermott, A. Pines and J. Clarke, J. Brazilian Chem. Soc. 10, 132 (1999).
  • High-Tc Superconducting Second-Order Gradiometer,
    A. Kittel, K.A. Kouznetsov, R. McDermott, B. Oh, John Clarke, C. Soble and V. Matijasevic, Appl. Phys. Lett. 73, 2197 (1998).